Relatório Final de Atividades

Programa de Educação Ambiental: Monitoramento dos Mananciais da Microbacia do Rio São Pedro

Proponente

Associação de Apoio à Escola do Colégio Estadual José Martins da Costa

Patrocínio

Agência Delegatária

Realização

Contrato no: CILSJ 03/2013 Data de assinatura: 18/04/2013

Parceiros

Laboratorio de Geotecnologias IF/ UFRRJ

:quipe:

Coordenador Geral - Pedro Adnet Moura - Eng. Florestal Laboratório de Geotecnologias- Tom Adnet Moura - Eng. Florestal Laboratório de Águas - Ruan Stulpen Veiga - Biólogo Laboratório de Linguagens- Pedro Kiua - Cineasta e produtor Cultural

Estagiários: João Pedro Almeida, Gabriel Duarte, Bianca Mozer, Gabriel Heringer, Mahat Eliot, Victoria Leal, Beatriz Carvalho, Vicente Chi, Juliana Leal, Davi Ouverney, Geovanni Mandrignani, Ian Fintelman, Gabriel Rocha, Alice Adnet e Stefani Melo, Larissa Blaudt, Gabriel Ouverney e Daniel Boy.

APRESENTAÇÃO

A escola é uma importante referência na vida das comunidades. Nos lugares mais remotos onde a presença do Estado parece sempre aquém do necessário, certamente se encontrará uma escola. Além do papel que exerce na formação das pessoas, sua influência social precisa ser cada vez mais reconhecida e fortalecida nesses momentos em que a sociedade brasileira clama por revalorizar a educação.

Como espaço de geração de conhecimento, transmissão de valores ou mesmo de defesa civil, a escola está no centro do debate sobre sustentabilidade. Afinal, faz parte da sua missão orientar as presentes e futuras gerações sobre as mudanças sociais e ambientais sem precedentes com as quais o mundo se defronta atualmente¹.

O Programa de Educação Ambiental: Águas para o Futuro - Monitoramento dos Mananciais da Microbacia do Rio São Pedro da Serra, objetiva promover a conservação dos recursos hídricos da Bacia Hidrográfica do Rio Macaé, propondo a construção de instrumentos que facilitem a atuação dos cidadãos no contexto das políticas públicas participativas, além de efetivar e divulgar a atuação do Comitê de Bacias Hidrográficas dos rios Macaé e das Ostras (CBH Macaé e das Ostras).

Pretende possibilitar o acesso a ferramentas de monitoramento da qualidade socioambiental que propiciem informações capazes de orientar o processo de tomada de decisões envolvido na gestão ambiental, promovendo a sensibilização para a necessária mudança das práticas e valores no sentido da implantação de uma proposta de desenvolvimento sustentável, na região do 5º e 7º distritos de Nova Friburgo, que considere as características, os interesses e os anseios das populações locais.

Neste contexto foram produzidas e divulgas informações relativas à área drenada pela microbacia do Rio São Pedro da Serra sobre: qualidade dos recursos hídricos, características da flora e da fauna, os monumentos geológicos, os tipos

¹ Moreira, T.; Barbosa, N. H. R; Santos, R.S e Costa, L. C. L. Educação ambiental e gestão das águas no ensino formal in: Política de águas e Educação Ambiental, processos dialógicos e formativos em planejamento e gestão dos recuros hídricos.MMA, 2013.

de uso dos solos existentes dentre outras informações relevantes. O trabalho foi sendo desenvolvido mediante a adaptação do Espaço de Ciências José Fernando Silva Mello do Colégio Estadual José Martins da Costa (CEJMC) para um Laboratório de Análise de Águas, e a implementação de um Laboratório de Geotecnologias e um Laboratório de Linguagens, fortalecendo a promoção da Educação Ambiental um dos eixos fundamentais da Proposta Político-Pedagógica do CEJMC- sob uma perspectiva dialógica e baseada na metodologia da pesquisa ação ou pesquisa participante, envolvendo professores e estudantes na produção, análise e divulgação de conhecimentos sobre a realidade socioambiental local.

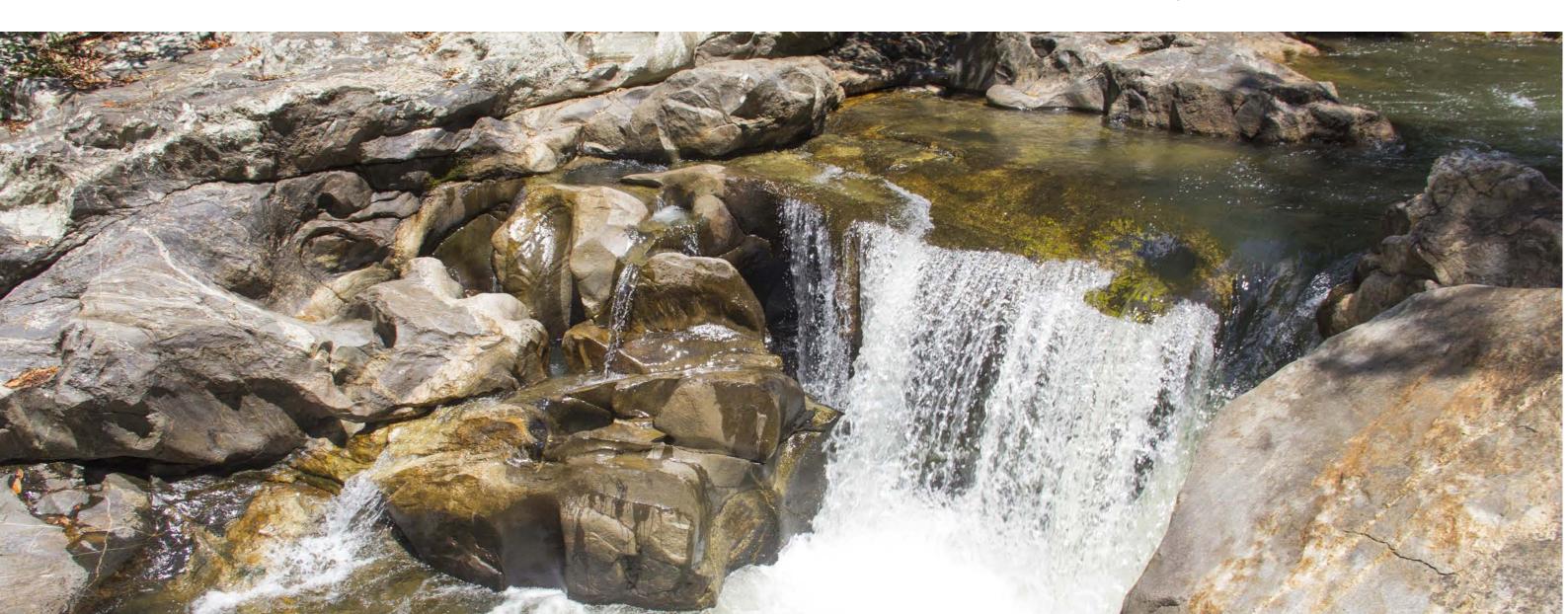
Inserindo as questões da sustentabilidade socioambiental no currículo e na gestão, as escolas adquirem a capacidade de irradiar sua influência para as comunidades nas quais se situam, auxiliando na transformação de crenças, hábitos e práticas. A gestão das águas constitui elemento essencial nesse debate sobre a criação de espaços educadores sustentáveis1.

Todas essas ações compõem o que se chama Círculo Virtuoso da Educação Ambiental, em que tudo está organicamente vinculado num espiral de possibilidades, cujo objetivo maior é promover uma aprendizagem transformadora das relações socioambientais com vistas à construção de sociedades pautadas na sustentabilidade. A transformação das escolas em espaços onde se possa aprender, vivenciar e promover a transição para a sustentabilidade constitui sua principal meta¹.

A educação ambiental deve estar no coração da gestão ambiental. A participação cidadã local/ planetária como assunto de EA é meta a ser atingida em sua plenitude, na construção de uma nova cultura em relação à ética do cuidado. Precisamos de ações de EA que desencadeiem um processo de participação e de transformação da realidade¹.

As atividades foram desenvolvidas buscando o fortalecimento de redes de colaboradores, com destagues para o CBH Macaé, a própria Associação de Apoio ao CEJMC, Associação de Moradores (AMASPS), de Agricultores Familiares (AFASPS) e de Comerciantes (ACISPS) de São Pedro da Serra, bem como diversas outras instituições públicas e privadas estabelecidas na região.

Cabe a EA consolidar-se de forma diferenciada, continuada e permanente, não se restringindo a iniciativas pontuais, como cartilhas, palestras ou campanhas, mas buscando sempre a contextualização, inclusive política, com foco na cidadania e no acesso universal à água de qualidade. A água se destaca no mosaico das condições que explicam a vantagem comparativa do novo ciclo de desenvolvimento do Brasil. A relevância do país na divisão internacional do trabalho e da produção não pode ser entendida sem se mencionar o estoque de 12% da água potável do mundo, associado a suas dimensões continentais, a alta produtividade agrícola e ao patrimônio biológico, social e cultural do seu povo. A educação, em todas as suas variantes, incluindo com destaque a ambiental e a democracia participativa são duas entre nossas salvaguardas para um desenvolvimento includente e sustentável¹.


Busca-se, assim, contribuir para o fortalecimento da cidadania e efetivar o direito ao meio ambiente equilibrado e sadio previsto no artigo 225° da Constituição brasileira. O Presente relatório tem por objetivo relatar as principais atividades desenvolvidas pelo Programa de Educação Ambiental Águas para o Futuro no período de Novembro de 2013 a Abril de 2014. No link a seguir pode ser visualizado um breve vídeo de apresentação do projeto>http://www.youtube.com/watch?v=f742T_piBH8 <

O nome original do projeto é Programa de Educação Ambiental, Monitoramento dos Mananciais da Microbacia do rio São Pedro. Em busca de um nome fantasia mais simples para facilitar ações de comunicação e mobilização social, foi realizada uma campanha de sugestões de nomes na escola. Cinco das melhores sugestões foram alvos de votação, sendo eleito pela maioria o nome, Águas para o Futuro. Logo surge a pergunta geradora: que água queremos para o nosso futuro? Planejamos a conservação de nossos recursos hídricos para quanto tempo?

Queremos água em quantidade e qualidade para todas as gerações futuras! Somos produtores de água, temos que dar valor a isso!

A logomarca foi desenvolvida pelo Designer gráfico Pedro Rutman Pagnoncelli, ex aluno do CEJMC, formado pela PUC Rio. O conceito está relacionado com a forma que o professor Fernando Mello, um dos idealizadores do projeto, sempre utilizou para exemplificar o que seria uma bacia hidrográfica, relacionando as folhas das árvores e suas nervuras como sendo as bacias e seus rios. Nesse sentido, o conceito principal da logo, é a alusão da folha de uma árvore com uma bacia hidrográfica, onde as nervuras são os cursos d'água, a nervura central é o rio principal onde a água é drenada e sai por um único ponto. O bico na folha representa o Pico da Sibéria, ponto mais alto da microbacia do rio São Pedro. A ligação entre as palavras água e futuro, feita pelo contato entre as letras "g" e o "f", representa um rio, como um elo, a estreita ligação entre o futuro da água e o nosso futuro.

SEMANA DE AMBIENTE, CULTURA E EDUCAÇÃO DO COLÉGIO ESTADUAL JOSÉ MARTINS DA COSTA "Ano Internacional de Cooperação pelas águas"

Realizado anualmente, o evento tem um perfil tradicionalmente multidisciplinar e foca o envolvimento direto e indireto da comunidade com as questões socioambientais e culturais da região, não só em relação aos riscos e problemáticas locais, mas também às muitas potencialidades, vocações e belezas que a região oferece aos moradores e visitantes.

No ano de 2013, a Semana de Ambiente, Cultura e Educação do CEJMC trouxe para reflexão as comemorações do Ano Internacional da Cooperação pelas Águas. Essa temática vai de encontro às iniciativas do Programa de Educação Ambiental "Monitoramento dos Mananciais do Rio São Pedro da Serra "Águas para o Futuro" que vem sendo desenvolvido no colégio com recursos do Comitê da Bacia Hidrográfica dos Rios Macaé e Ostras e apoio de diversos parceiros e amigos, além de abrirem um espaço participativo e decisório para o uso e gestão dos recursos hídricos da região, promovem ações de monitoramento, valorização e cuidado ambiental, fortalecimento da comunidade, e cidadania para os estudantes e moradores de São Pedro da Serra. A escola, por sua vez, tem a responsabilidade de articular as iniciativas para o bem estar ambiental e social de todos, mas principalmente daqueles que são o futuro da região, nossas crianças e jovens.

Planejado de forma colaborativa com a direção da escola, professores e alunos o objetivo geral do evento foi contribuir para a formação técnico/científica e cultural dos alunos do CEJMC, promovendo a integração da comunidade com os trabalhos desenvolvidos pelo CEJMC e assim contribuir para o fortalecimento da cooperação pelo desenvolvimento sustentável na bacia hidrográfica rio Macaé tendo como área piloto a microbacia do rio São Pedro da Serra, aliando a cooperação pelas águas com a cooperação pela agricultura familiar de base sustentável na microbacia hidrográfica.

Os objetivos específicos foram:

Promover oficinas teórico/práticas, multidisciplinares para toda a comunidade escolar.

Apresentar os resultados parciais do Programa de Monitoramento dos Mananciais do rio São Pedro da Serra "Águas para o Futuro" bem como de outros projetos em desenvolvimento do CEJMC como a Escola de Cinema Cine Zé.

Promover a apresentação dos diversos trabalhos desenvolvidos pelos alunos do colégio nas disciplinas para a comunidade.

Nesse contexto, no dia 21 de outubro de 2013 as atividades se iniciaram as 8:00 hs da manhã com uma sessão de alongamento geral e as 8:30 iniciaram-se as oficinas diversas:

- Educomunicação- Linguagem audio-visual voltada a vídeo reportagens.
- -Reaproveitamento de restos de mecânica, Análise de água no laboratório
 - Pintura grafite nos muros da escola Pintura com terra
 - Observação de aves Reflorestamento Oficina de Pão
 - Alimentação viva Oficina de RPG

Alongamento geral

Oficina de reflorestamento. parte teórica

Oficina de RPG

Oficina de observação de aves parte teórica

Oficina de Educomunicação

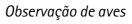
Oficina de alimentação viva

Resultado da oficina de pintura com terra

Oficina de análise de água no espaço de ciências

Oficina de reflorestamento e educomunicação - parte prática

Oficina de educomunicação



Oficina de pães e massas

Oficina de grafite

Observação de aves

Observação de aves

Apresentação dos resultados parciais, com foco no uso e cobertura do solo e na qualidade das águas;

No dia 12 de Dezembro de 2013 foi realizada uma apresentação pública dos resultados parciais do projeto na escola, apresentação esta, focada na discussão dos resultados parciais do mapeamento do uso e cobertura do solo e da qualidade das águas dos mananciais do rio São Pedro, já com 4 meses de monitoramento. Nessa reunião estiveram presentes pessoas da comunidade, representantes de associações locais, do atual sub-prefeito da região e também de membros do CBH Macaé e Ostras, com destaque para a participação do Diretor Geral do CBH, o Sr. Afonso Henrique de Albuquerque Jr. e da Srª Gláucia Freitas Sampaio da GEAGUA / INEA.

Participação no Evento em comemoração aos 10 anos do CBH Macaé e das Ostras;

No dia seguinte a apresentação, a equipe do projeto foi convidada a participar do evento em comemoração aos 10 anos do CBH Macaé e das Ostras, realizado também com o objetivo de apresentar o Plano de Recursos Hídricos da Região Hidrográfica VIII.

Celebração dos 10 anos do CBH-Macaé e lançamento do Plano de Recursos Hídricos

Reunião de acompanhamento com professores e direção;

Antes do encerramento do ano letivo, foi realizada junto a direção da escola, uma reunião de avaliação das atividades até então desenvolvidas no colégio. O ponto central das discussões foi a necessidade de uma maior integração do projeto e suas propostas com a realidade da rotina escolar, ressaltando-se a necessidade de um melhor planejamento, articulação e parceria com professores e turmas da escola. Nessa reunião ficou acordado, que as ações do projeto devem ser realizadas abarcando uma maior participação de alunos e professores.

Reunião com professores

Encerramento do ano letivo.

Como encerramento do ano letivo de 2013, além de uma celebração realizada no colégio no último dia de aula, foi realizada uma pequena reunião com os estagiários do projeto. Essa celebração foi realizada na Pousada Aliá, localizada em Lumiar.

Local da atividade de encerramento do ano.

Reunião com a direção

No dia 10/01/2014, como resultado da reunião realizada no final do ano de 2013, foi realizada uma nova reunião com a direção do colégio, sendo então acordada a necessidade da elaboração de um "cardápio alternativo de atividades" para ser apresentado para os professores, em busca de um maior envolvimento dos mesmos com as atividades e ações do projeto. A seguir segue o documento formulado, contendo as propostas feitas pelos técnicos dos laboratórios, contemplando as especificações previstas no edital de contratação do projeto, dentre outras contribuições provindas das reuniões coletivas.

Reunião com a direção e professores, articulação pedagógica do projeto (elaboracão de um "cardápio de atividades" 08-02-2014 - Dragon Dreaming.

No dia 08/02/2014, último dia da primeira semana de aulas no colégio, foi realizada uma reunião de planejamento docente, entre os professores e a direção do CEJMC, sendo então apresentado aos professores, o "cardápio" elaborado, com o objetivo de mostrar a importância de sua participação, e clarear que as ações serão construídas em coletivo, com eles e suas turmas, utilizando a metodologia denominada *Dragon Dreaming*, que trabalha a sabedoria coletiva em projetos colaborativos que buscam fortalecer comunidades, promover o crescimento pessoal e o serviço à Terra.

Contratação de um novo coordenador para o laboratório de Linguagens. (10-02-2014).

Após a saída do Historiador Juliano Palm, que assumiu o cargo de coordenador da mobilização social para a terceira consulta popular do Plano de Recursos Hídricos da Região Hidrográfica VIII, foi contratado um novo técnico para a função, o Cineasta e Produtor Cultural Pedro Kiua, morador local envolvido com diversos eventos e mobilizações pela região, com destaque para a coordenação do Cine Club Lumiar e Feira da Terra.

Segue abaixo o texto elaborado e apresentado para os professores na reunião do dia 8 de fevereiro de 2014.

"CARDÁPIO DE APRENDIZAGEM"- PLANEJAMENTO 2014

Principais expectativas: Realizar atividades que possam ser assimiladas pelos professores, nas disciplinas e assuntos diversos de interesse. Fortalecer atividades focadas no objetivo principal do projeto que é fornecer instrumental técnico político e científico para a participação da comunidade escolar nas políticas públicas que fazem a gestão do território na região.

Atividades pedagógicas interdisciplinares

De forma a atender a determinadas especificações do edital de licitação, formulamos algumas atividades as quais consideramos viáveis de serem inseridas no cotidiano escolar, podendo ser assimiladas pelos professores como atividades de suas respectivas disciplinas.

Nossa intenção é realizar essas atividades previstas no edital do projeto, junto com professores e alunos, desenvolvidas como trabalhos das respectivas disciplinas com suporte dos laboratórios. Elas serão desenvolvidas em sua maioria nos horários das aulas vagas, e algumas atividades práticas em horários extras, no contra-turno e finais de semana, principalmente nos sábados considerados letivos. Essas são apenas propostas, não estão fechadas, precisamos conversar e obter o *feedback* de todos os interessados, de forma a contemplar os desejos de todos que tiverem vontade de interagir mais com esse projeto, que é da escola, nascido aqui, pelo sonho de vocês professores.

Como forma também de realizar parte dessas atividades, há a possibilidade de serem montados grupos de trabalho, com alunos de turmas mistas e atividades desenvolvidas apenas no contra-turno das aulas, como por exemplo um "grupo de estudos de flora". A intenção é que todos participem. As equipes formadas nos laboratórios serão responsáveis pelo suporte técnico e logístico para o desenvolvimento das atividades.

Monitoramento da qualidade da água

Área de atuação: Ciências, Biologia, Geografia, Química e Física;

Proposta: Dar continuidade ao monitoramento da qualidade das águas dos principais mananciais da microbacia do rio São Pedro, em 13 pontos fixos, realizando as atividades de coleta de amostras, rotina de análises e posterior interpretação, discussão e apresentação dos resultados para a comunidade escolar e extra-escolar;

Metodologia: Mensalmente são coletadas amostras nos 13 pontos de monitoramento, já acompanhados pelo CEJMC desde 1998. Nos dias posteriores a coleta, são realizadas as análises no Espaço de Ciências José Fernando Silva Mello, a rotina costuma durar 3 dias. Já possuímos dados de 5 meses de análises, e temos por objetivo completar 10 meses de monitoramento nessa primeira etapa do projeto. A intenção é que o colégio dê seqüência ao monitoramento por tempo indeterminado, para isso, alunos e principalmente professores precisam se apropriar das metodologias de coleta e análises, de forma a conseguir dar seqüência ao trabalho sozinhos, caso necessário.

Uma equipe seria treinada no laboratório, responsáveis técnicos pelas análises, com interação com turmas e professores diversos. A discussão dos resultados das análises será realizada juntamente com a caracterização ambiental dos pontos e com a interpretação dos mapas das sub-bacias hidrográficas, tornando possível uma análise mais consistente da qualidade da água, da saúde ambiental das sub-bacias hidrográficas e da relação da ocupação do solo com a qualidade da água;

17

Acompanhamento da Vazão dos cursos d'água

Área de atuação: Matemática, Geografia e Física;

Proposta: Realizar a medição da vazão nos pontos de monitoramento da qualidade da água, nos principais afluentes do Rio São Pedro, com possibilidade de uma atividade também no rio Macaé; A proposta é fazer o acompanhamento com pelo menos duas medições anuais, na estiagem com o rio vazio e na época das chuvas, com o rio cheio.

Objetivo: Realizar a medição da vazão, principalmente nos pontos de monitoramento, de forma a relacionar a qualidade com o volume/quantidade d'água nos pontos;

Metodologia: Em parceria com o CETEMA/IPRJ-UERJ, a metodologia utilizada para medição de vazão é o método das seções, com uso de um fluviômetro. Essa metodologia se baseia na medição da velocidade do fluxo e da área das seções transversais dos cursos d'áqua.

Velocidade (m/s) x Área da seção (m^2) = Vazão (m^3/s) .

Biomonitoramento

- Área de atuação: Ciências e Biologia

Proposta: Realização de uma caracterização e acompanhamento ambiental dos pontos de monitoramento, focada em indicadores biológicos de qualidade da água, principalmente os peixes (ictiofauna) e macro-invertebrados; Junto a atividade, além da observação dos indicadores, a presença de indicadores de ação humana, como a presença de lixo, lixeiras mal posicionadas, tubulações, mal cheiro, etc, também serão registrados.

Objetivo: Aliar aos resultados e discussões sobre a qualidade da água, outros aspectos, como a presença de plantas e animais indicadores de equilíbrio ambiental;

Metodologia: Após a realização de atividades teóricas de planejamento no laboratório, com a elaboração de uma ficha de campo, seriam realizadas atividades de campo nos pontos, para levantamento de informações e coleta de material;

Flora/Vegetação

Àrea de atuação: Ciências, Biologia e Geografia

Objetivo: Promover a valorização dos recursos florestais, com foco na diversidade florística de espécies arbóreas.

Proposta: Realizar um levantamento florestal, direcionado à identificação botânica, principalmente de espécies arbóreas, através de um inventário florestal em uma área de interesse para implantação de um circuito de educação ambiental e turismo ecológico. Interagindo com o desenvolvimento do atual programa em desenvolvimento pelo Governo do Estado do RJ, Inventário Florestal Nacional no Estado do Rio de Janeiro (IFN-RJ).

Metodologia: Instalação de uma parcela permanente com medição e identificação das espécies arbóreas ou de interesse presentes no interior da floresta. Tomar fotografias botânicas das espécies identificadas de forma a possibilitar a elaboração de um guia ilustrado das espécies.

Atividade de Segurança

Área de atuação: Todos que utilizam o Espaço de Ciências;

Proposta: Realizar uma atividade de segurança, procedimentos e orientações gerais no uso do laboratório.

GEOTECNOLOGIAS

Mapeamento do uso e cobertura do solo

Área de atuação: Geografia, Sociologia e Matemática

Proposta: Dar continuidade ao mapeamento das feições ambientais na microbacia, com foco na atualização do mapa de uso e cobertura do solo através de atividades teóricas e práticas de mapeamento das sub-bacias que compõe o rio São Pedro. Mapeamento também da hidrografia e nascentes dos afluentes do rio São Pedro.

Metodologia: Através da interpretação visual de imagens de satélite atuais da microbacia, com suporte de atividades de campo, utilizando softwares livres, principalmente o QGIS e receptores GPS. Capacitação dos professores e alunos no uso do QGIS e de receptores GPS.

Objetivo: O mapa de uso e cobertura do solo tem fundamental importância para diversos situações de tomada de decisão. Para o projeto, atualmente, uma das principais funções desse mapeamento é sua relação com a qualidade da água, de forma a realizar um diagnóstico das principais fontes de contaminação dos cursos d'água. O mapa pode dar suporte ao planejamento de circuitos de ecoturismo, turismo rural, escoamento de produção, etc.

Mapeamento de trilhas, caminhos e pontos turísticos da região

Área de atuação: Geografia

Proposta: Realizar o mapeamento e caracterização de trilhas, caminhos e pontos turísticos na microbacia do rio São Pedro e região.

Objetivo: Realizar o mapeamento de forma pedagógica, capacitando os alunos no uso de GPS e do QGIS, em trilhas e roteiros turísticos da região.

Metodologia: Através da realização de atividades de campo, do uso de imagens de satélite e softwares de geoprocessamento e GPS, os alunos serão orientados de que fora realizar o mapeamento e caracterização dos respectivos alvos, seja uma trilha, caminho, ponto turístico ou problemática local.

19

Mapeamento do relevo e elaboração de uma carta de monumentos geológicos na microbacia do rio São Pedro;

Área de atuação: Geografia, História, Sociologia

Proposta: Através de atividades teóricas em sala de aula e práticas em campo e no laboratório de Geotecnologias, utilizando as bases cartográficas disponíveis, realizar o mapeamento do relevo e elaborar uma carta dos monumentos geológicos da microbacia do rio São Pedro. As rochas são importantes marcos geográficos na microbacia, temos por principais referências a Pedra Eller, a Pedra do Mafort, a Pedra da Benfica e o Pico da Sibéria, dentre outras, todas divisores topográficos da microbacia. Esses são exemplos de afloramento rochosos "nus", porém é sabido que a maior parte das montanhas por aqui são rochosas, porém muitas delas apresentam exuberante cobertura florestal.

Base cartográfica: Possuímos uma excelente base topográfica da região, uma base de um levantamento cadastral da AMPLA, feito em 1998, na escala 1:10.000. Além disso possuímos alguns materiais no qual constam a identificação das principais montanhas por aqui.

Metodologia: Utilizando os software QGIS e a base cartográfica disponível, realizar o mapeamento das feições do relevo, gerando mapas de altitude, declividade e fácie de exposição da microbacia. Com o auxílio de um Geólogo, elaborar uma carta dos principais monumentos geológicos na microbacia. Nosso principal desafio é planejar a estratégia pedagógica e a inserção do conhecimento geológico para turmas do ensino médio do Colégio. Se possível temos a intenção de elaborar uma maquete da microbacia, em escala.

Plano Diretor Municipal:

Proposta: Fazer uma atividade de discussão sobre a revisão do Plano Diretor Municipal de Nova Friburgo.

LABORATÓRIO DE LINGUAGENS

Resgate Histórico:

Disciplinas: História, Sociologia, Geografia.

Descrição: Dar continuidade a campanha de resgate histórico, como uma tentativa de reunir um grande acervo histórico de São Pedro da Serra e região, com fotos, vídeos, livros, artigos publicados por pesquisadores, entrevistas com moradores antigos, etc.

Objetivo: Montar na escola um acervo histórico da região, que potencialize o contato dos professores de história com o material, repassando conhecimentos e saberes aos alunos, mas também para acesso a todos da comunidade que tenham interesse pelo assunto.

Metodologia: Campanha de recebimento e organização de materiais históricos da região no colégio, somada a realização de uma série de entrevistas com moradores antigos e também com pessoas especialistas no assunto, de forma a produzir um pequeno documentário que possa ser utilizado de forma pedagógica nas escolas da região.

Elaboração de materiais de divulgação

Descrição: Elaboração de folders e outros materiais de divulgação referentes as pesquisas realizadas pelo laboratórios, de forma a potencializar a divulgação dos resultados para o público escolar e extra-escolar.

- Folder de divulgação qualidade da água e análise de água para a comunidade;
- Filme institucional com as atividades do projeto.
- Carta dos monumentos geológicos na microbacia do rio São Pedro.
- Mapa do uso e cobertura do solo na microbacia.

RESUMO:

águas

- I Monitoramento da qualidade dos mananciais do rio São Pedro;
- II Análise de água para comunidade;
- III Biomonitoramento;
- IV Visita ao reservatório (tratamento d'água);
- V Atividades de segurança;
- VI Oficinas de capacitação com professores;
- VII Dia do monitoramento de hora em hora em 2 pontos ou mais;
- VIII Avaliação do impacto do carnaval e feriados;
- IX Atividades pedagógicas/práticas no laboratório;

Geotecnologias

- I Mapeamento do uso e cobertura do solo
- II Mapeamento de trilhas e roteiros turísticos
- III Mapeamento do relevo e elaboração de carta de monumentos geológicos
- IV Suporte pedagógico/prático a aulas de geografia.
- V Elaboração de um mapa de planejamento de ação para o posto de saúde de São Pedro.

21

Linguagens

- I Materiais didáticos das disciplinas;
- II Vídeo institucional do projeto;
- III- Folders de divulgação dos resultados;
- IV Banco de dados e informações da região;

Atividades Pedagógicas potenciais

Comitê de Bacias Hidrográficas
Plano de Manejo da APA Macaé de Cima
Qualidade da água
Mapeamento da região
Como fazer/submeter Projetos
Identificação Botânica
Manejo de bacia hidrográfica

O projeto possuiu alunos com função de estagiários-monitores, bolsistas e voluntários, auxiliando no funcionamento integral da rotina dos laboratórios, porém, de maneira geral os trabalhos foram desenvolvidos com as turmas, possuindo cada uma um tema específico, escolhidos de acordo com a vontade de cada turma, apoiado com as opções previstas no edital do projeto e no cardápio de aprendizagem proposto.

Com apoio da estrutura dos laboratórios da escola, os projetos das turmas ganham força e confiança para a realização. Auxiliados pelos técnicos responsáveis pelos laboratórios, são realizadas previamente ações de capacitação dos grupos de trabalho, já associadas a aplicação das técnicas a seus respectivos projetos.

Para construção dos trabalhos, foi utilizada a metodologia holística e participativa de construção e gestão de projetos colaborativos sustentáveis, conhecida como *Dragon Dreaming*. Essa técnica vem se mostrando extremamente eficaz no processo de construção de projetos de pesquisa-ação, proposta principal do projeto, como estratégia de educação ambiental.

Existem diversas definições para essa metodologia, seguem algumas delas, provenientes de seus idealizadores, membros da Fundação Gaia, da Austrália Ocidental:

DEFINIÇÃO EM UMA LINHA:

Dragon Dreaming - "uma forma de tornar seus sonhos realidade".

DEFINIÇÃO PARA AS ORGANIZAÇÕES BUROCRÁTICAS

Dragon Dreaming – uma abordagem para o planejamento estratégico participativo e consensual de projetos e organizações na área de Comunidades para o desenvolvimento econômico ecologicamente sustentável. Esta técnica permite um feedback rápido, construindo a sabedoria coletiva e promovendo a capacidade de adaptação, permitindo que indivíduos, grupos, empresas, comunidades e órgãos do governo se ajustem de forma criativa e positiva a situações de mudança rápida e potencialmente caótica.

Todo projeto começa com o sonho de um indivíduo e quando esse sonho é compartilhado com um grupo comprometido ele ganha muito mais força pra virar realidade. Os projetos "Dragon Dreaming" se dividem em quatro etapas principais, subdivididas em 12 passos para construção de um projeto de sucesso. Dessa forma, junto com os alunos, os projetos são construídos desde o momento da tomada de consciência até a importante reflexão e celebração ao término do projeto. 1) SONHAR – do Ser Individual ao Pensamento Teórico

- 1. Conscientização
- 2. Motivação
- 3. Compilação de informações
- 2) PLANEJAR do Pensamento Teórico ao Outro Ambiental
- 4. Considerando Alternativas
- 5. Desenhando uma Estratégia
- 6. Testando e colocando à prova um Piloto
- 3) REALIZAR do Outro Ambiental à Prática de Sentir e Perceber
- 7. Implementação
- 8. Gestão e Administração
- 9. Monitorando o Progresso

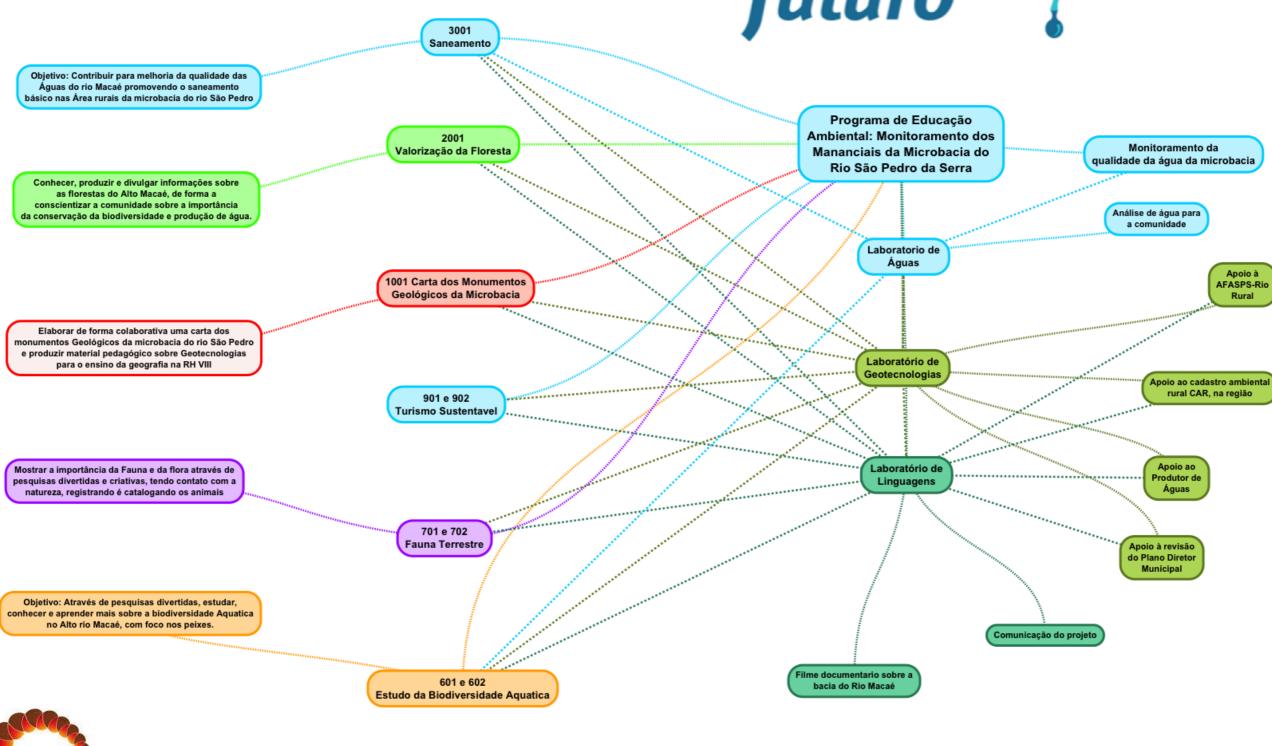
- 4) CELEBRAR da prática de Sentir e Perceber ao Ser Individual
- 10. Adquirindo novas habilidades
- 11. Resultados de transformação para os Indivíduos
- 12. Discernindo com sabedoria

Considerando-se a necessidade de os projetos serem construídos coletivamente, a primeira providencia com o início dos trabalhos com as turmas é a adoção de acordos de convivência entre o grupo, "acordos de cavalheiros". Relacionados com ao bom andamento das discussões e construções coletivas:

- 1 Co-responsabilidade Todos somos responsáveis pelo bom andamento do trabalho do grupo;
- 2 Acordos de mão Pedidos de silêncio, auto-inscrição, votações, etc.
- 3 Pinakarri O Acordo da escuta profunda, da harmonização do grupo, da meditação coletiva. Quando um pequeno sino é tocado, o acordo é que todos devem parar seus afazeres, se compor em boa postura, fechar os olhos, tomar consciência do apoio incondicional da terra e silenciar por 15 segundos.
- 4 Aha! O acordo das boas idéias. Boas idéias devem ser compartilhadas com o grupo, evitando seu esquecimento. Uma idéia interessante, com a colaboração de todos pode se transformar em uma excelente idéia.
- 5 Nada é óbvio Dúvidas devem ser compartilhadas, devendo haver respeito por parte de todos do grupo.

Feitos os acordos, cada uma das etapas seqüentes do projeto é realizada da forma mais participativa possível, geralmente na forma de uma chuva de idéias.

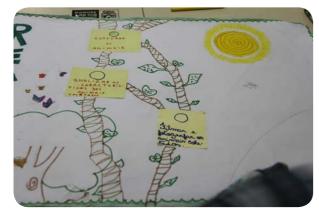
O Círculo dos Sonhos: Nessa fase, todos têm a oportunidade de refletir sobre seus desejos com o projeto. A pergunta geradora é: O que tem que ter no projeto, para que seja a melhor forma para você investir o seu tempo, o que te deixaria plenamente satisfeito? Os sonhos de cada um devem, na medida do possível e do bom senso ser realizados pelo grupo, se tornam objetivos específicos dos projetos.

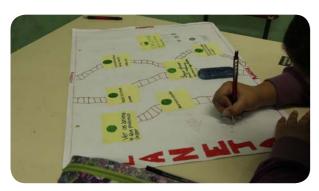

Passada a etapa do sonhar, da tomada de consciência do que pretendemos, entramos na fase do planejamento do projeto. O planejamento objetiva elencar todas as tarefas necessárias para plena realização do projeto, dos sonhos, contemplando tarefas em todas as sub-fases do projeto. A intenção é construir uma espécie de tabuleiro de um jogo, um fluxograma lógico de etapas e seqüência de tarefas, que facilite o entendimento e o monitoramento do progresso do projeto por parte de todos os participantes. Dessa forma pretendemos "jogar" os projetos, cumprindo as etapas representadas pelas tarefas. A realização das tarefas é realizada da mesma forma, cada uma das etapas significa um pequeno projeto dentro do projeto, uma espécie de fractal, que varia em escala. Cada tarefa deve ser sonhada, planejada, realizada e celebrada, fazendo esforço de obter os melhores resultados de cada uma delas. Dessa forma espera-se que todos tenham sentimento de pertencimento com o projeto, colaborando ativamente com a construção dos resultados obtidos.

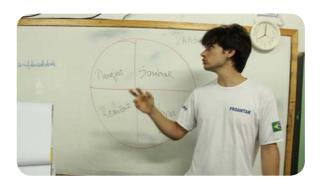
Entenda-se esse texto como um pequeno resumo metodológico aplicado no Águas para o Futuro, a metodologia do Dragon Dreaming vem sendo desenvolvida ao longo de mais de 25 anos, coletivamente, contando então com uma grande experiência adquirida na elaboração de projetos. Mais informações pode ser encontradas em: www.dragondreaming.com.br

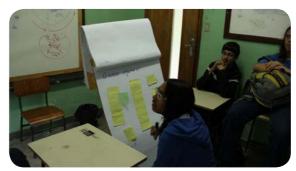
23

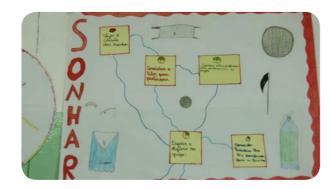
Dessa forma cada turma teve desenvolvido um projeto praticando essa metodologia colaborativa. Os temas desenvolvidos pelas turmas podem ser visualizados no fluxograma abaixo.



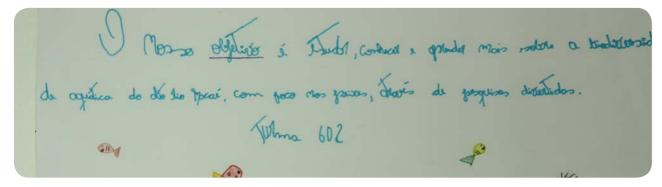

A seguir são apresentadas fotografias das atividades com as turmas utilizando a metodologia do Dragon Dreaming.







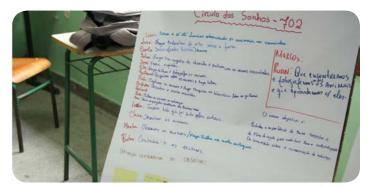
27


Aprendendo a trabalhar e projetar em grupo.

"Karabiardt" O tabuleiro do jogo - planejamento participativo e monitoramento do progresso das tarefas do projeto.

Acordos de mão - silêncio

Pinakarri- Escuta profunda, o pim é o sinal.


Sonhar, planejar, realizar e celebrar.

Planejar – ilustrando nosso plano

Aprendendo a planejar em grupo.

Círculo dos sonhos - Qual o seu sonho para este projeto?

Acordo de auto inscrição

Nada como realizar tarefas de celebração.

Realizando a etapa de fotografia dos peixes coletados.

Pescando no poço do Bininho.

Limpa fundo.

Mariazinha

Cascudo

Limpa fundo

Bagre

Percevejo da água

Pegando os peixes para fotografia

peixes coletados

Algumas das plantas coletadas com os alunos na trilha do pico da Sibéria.

Plantas coletadas na trilha do pico da Sibéria.

Recomeço com a campanha de monitoramento da qualidade da água

Foram realizados 10 meses de monitoramento da qualidade das águas dos mananciais do rio São Pedro, iniciadas em Setembro de 2013 e com a mais recente, no mês de Junho de 2014. Desta forma, mensalmente vem sendo realizado o monitoramento da água nos 13 pontos definidos na microbacia. Como apoio as pesquisas e ao entendimento da relação do uso do solo com a qualidade da água também são realizadas coletas extras em outros locais de interesse na região, com destaques para análises feitas no rio Boa Esperança, no rio Macaé, rio Bonito e Córrego São Tiago.

Com o objetivo de facilitar a participação de um maior número de alunos nas atividades do projeto, principalmente as coletas de amostras de água e também as filmagens do documentário que vem sendo produzido, foi firmada uma parceria com a Empresa Aventura Tour, responsável por passeios de Jeep na região. Com um calendário previamente estabelecido, a Aventura Tour disponibilizou veículos para dar suporte às atividades de campo. A seguir são apresentadas fotografias das saídas de campo para coleta de amostras de água.

Fotos das atividades de coleta de amostras de água

Fotos das atividades de coleta e análise de amostras de água

Fotos das atividades de coleta de amostras de água

Apresentação de Resultados

No dia 22 de outubro, durante a feira de ambiente, cultura e educação foi realizada a primeira apresentação de resultados parciais. No dia 12 de Dezembro foi realizada outra apresentação para lideranças locais, membros do CBH-Macaé e do Inea. Foi realizada ainda, uma apresentação para a comunidade durante a Exposição da Agricultura Familiar da região, promovida pela AFASPS na quadra poliesportiva de São Pedro da Serra. Nessa oportunidade foi montado um stand do projeto onde os moradores e turistas puderam conhecer o folder e banner alem de interagir com os alunos. Vale mencionar também a apresentação realizada em um dos sábados letivos motivados pela Copa do Mundo de futebol, que nesta dia recebeu também professores e alunos do Colégio Estadual Carlos Maria Marchon, de Lumiar. No dia 06/06/2014 foi realizada uma apresentação durante a reunião Plenária do CBH-Macaé onde os alunos puderam apresentar os resultados parciais alcançados pelo projeto. Merece destaque ainda, a participação da equipe do projeto na conferência municipal de meio ambiente onde o projeto foi parcialmente apresentado para a comunidade no espaço reservado as discussões sobre o saneamento básico da região.

Participação na primeira exposição da agricultura familiar de São Pedro da Serra e região.

39

Apresentação de resultados na reunião plenária do CBH- Macaé

Folder de divulgação

De forma a facilitar a interação e disseminação de informações e contatos do projeto com a comunidade e turistas que freqüentam a região, foi confeccionado um folder informativo, que tem por destaque um mapa da microbacia do rio São Pedro, com os rios e a qualidade das águas nos pontos de monitoramento, já com 7 meses de acompanhamento. Juntamente com o folder, foi produzido um mapa ilustrativo do projeto, com os rios, os pontos de monitoramento e a qualidade das águas que será distribuído pelas escolas locais, de forma a ser utilizado de maneira pedagógica.

Os rios são um bem comum.

A água, recurso essencial para a vida, está cada vez mais poluída e escassa no mundo, porém na bacia do rio Macaé ela é abundante e, em geral, de boa qualidade. Moradores de São Pedro da Serra e de Lumiar, visitantes e turistas devem perceber que o rio une e interliga todos os que usufruem de suas águas. Os cursos d'água são bens públicos, todos somos "donos" dos rios. Devemos, por isso, zelar por sua limpeza e conservação.

Conhecer e cuidar da qualidade de nossas águas é uma responsabilidade de todos e começa na escola!

Águas para o Futuro é resultado do trabalho de Educação Ambiental iniciado em 1986 por professores e alunos do Colégio Estadual José Martins da Costa. Nossa missão é contribuir para um desenvolvimento sustentável que considere os interesses, as características e os anseios de nossa comunidade. Com conhecimento e ação, podemos construir um futuro próspero e abundante para as próximas gerações...

O programa de Educação Ambiental Águas para o Futuro se organiza em 3 espaços pedagógicos:

LABORATÓRIO DE ÁGUAS

Acompanha mensalmente a qualidade das águas de forma participativa em 13 pontos importantes do rio São Pedro da Serra e seus mananciais, além de analisar gratuitamente amostras de águas de nascentes, poços e riachos para a comunidade.

LABORATÓRIO DE GEOTECNOLOGIAS

Realiza o mapeamento de rios, trilhas, estradas e propriedades rurais, organizando um banco de dados para uso didático e livre consulta pela comunidade.

LABORATÓRIO DE LINGUAGENS

Trabalha a organização, comunicação e a divulgação de informações socioambientais locais, por meio da produção de materiais digitais, impressos e audiovisuais.

Parte interna do folder com o mapa síntese dos resultados .

Resultados do mês de Setembro de 2013.

PONTO	CT NMP/100mL	E. coli NMP/100mL	рН*	Turbidez NTU	Cond. (μS)	S. T. (mg/L)	OD mg/L	Cloro mg/L	T. Água (°C)	N Total* mg/L	Nitrato mg/L	P Total mg/L
1	0	0	7,13	0,19	45,75	16	7,66	0,75	20	0,405	0,823	0,245
2	70	33	7,77	0,8	27,68	11	7,43	0,19	18	0,467	0,437	1,120
3	1100	230	7,87	1,35	37,48	3	9,81	0,26	19	0,498	0,501	0,317
4	11	2	7,83	0,5	28,51	4	7,21	0,25	18	15,938	0,534	0,495
5	160000	160000	8,25	209	82,08	1351	7,59	0,22	20,8	2,944	15,401	1,245
6	5400	1700	8,18	1,78	60,08	7	7,77	0,26	19	0,794	2,883	0,477
7	350	84	8,36	1,25	24,77	10	6,69	0,16	18,6	1,210	0,823	0,245
8	170	170	8,2	1,53	24,77	7	6,75	0,14	19,8	0,795	1,242	0,370
9	9200	470	7,66	4,02	29,74	14	6,69	0,16	21,4	0,351	0,823	0,424
10	3500	110	7,42	1,73	50	33	7,09	0,1	20,8	0,308	0,373	0,334
11	1100	330	8,85	1,8	39,58	7	7,62	0,07	19	0,726	0,341	0,227
12	4300	2100	7,17	1,5	42,85	31	6,97	0,13	21,3	0,985	0,759	0,459
13	9200	5400	7,05	1,65	44,26	24	7,25	0,1	22	0	1,016	0,281

Legenda: C.T = Coliformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Resultados do mês de Outubro de 2013

PONTO	C. T. NMP/100mL	E. coli NMP/100mL	рН	Turbidez NTU	Cond. (μS)	S. T. mg/L	O.D. mg/L	Cloro mg/L	T água °C	N Total mg/L	Nitrato mg/L	P Total mg/L
1	33-0	33-0	8,5	0,55	51,63	21	7,73	0,88		0,488	0,501	0,299
2	94	33	6,88	0,65	26,81	15	10,85	0,16	18,1	0,232	0,244	0,156
3	2400	790	6,94	1,06	34,16	83	7,96	0,05	20	0,616	0,630	0,227
4	49	49	6,68	0,53	25,14	19	7,87	0,21	18,8	0,329	0,341	0,602
5	2300	2300	6,9	3,7	70,69	60	7,12	0,22	21,2	0,148	0,147	0,602
6	11000	7900	7	2,53	58,13	40	7,13	0,53	21,6	2,773	2,754	0,227
7	79	33	6,7	0,71	23,55	15	8,06	0,67	18,9	0,482	0,501	E
8	330	110	6,9	2,68	26,7	32	8,08	0,38	18,6	0,165	0,180	0,334
9	13.000	220	7,07	2,46	31,08	28	7,8	0,7	19,4	0,233	0,244	0,549
10	1700	780	8	3,03	48,68	42	8,55	0,5	18,9	1,134	1,145	0,334
11	2400	1300	6,83	2,72	35,53	23	8,6	0,03	21	0,488	0,501	0,227
12	230	0	6,93	2,46	45,6	42	7,92	0	21,8	0,489	0,501	0,227
13	2200	790	7,46	1,9	45,67	36	8,4	0,08	22	0,488	0,501	0,084

Legenda: C.T = Coliformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Resultados do mês de Novembro 2013

PONTO	C.T. NMP/100mL	E. coli .NMP/100mL	рН	Turbidez NTU	Cond. μS	S. T. (mg/L)	O.D. mg/L	Cl mg/L	T água °C	N Total mg/L	Nitrito mg/L	Nitrato mg/L	P Total mg/L
1	0	0	7,05	1,45	66,53	40	7,48	0,97	24,1	0,853	0,000	0,852	0,022
2	170	70	6,88	2,37	28,06	31	6,42	0,22	15,9	0,842	0,001	0,841	0,022
3	9200	9200	7,02	2,27	44,47	37	6,95	0,2	20,4	0,842	0,001	0,841	0,027
4	21	10	6,66	2,24	26,4	23	7,12	0,22	21,3	0,855	0	0,855	0,018
5	160000	160000	6,88	5,34	82,58	61	6,72	0	24,2	1,666	0,021	1,645	0,193
6	14000	7900	7	3,09	68,38	60	4,8	0,6	25,5	4,078	0,067	4,011	0,083
7	170	170	6,81	1,5	23,82	14	6,2	0,66	25,6	0,850	0,001	0,850	0,015
8	410	410	7	3,69	23,88	23	7,75	0,11	25	0,850	0,001	0,850	0,015
9	2300	2300	6,9	4,44	31,77	29	7,09	0,16	23	0,097	0,002	0,095	0,023
10	4600	2300	7,1	3,43	49,18	46	6,68	0,58	25	0,475	0,007	0,468	0,040
11	1700	780	7,2	2,79	38,15	11,000	7,33	0,62	25	0,169	0,005	0,164	0,023
12	7900	6800	7,3	2,97	51,53	19,000	5,25	0,11	24	0,346	0,003	0,343	0,038
13	2000	920	8	2,61	45,66	12	-	0,19	-	0,233	0,001	0,232	0,032

Legenda: C.T = Coliformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Resultados do mês de Dezembro de 2013

PONTO	CT NMP/100mL1	E. coli NMP/100mL	рН	Turb. NTU	Cond. (μS)	S. T. (mg/L)	O.D. (mg/L)	Cl (mg/L)	T. agua °C	N total (mg/L)	Nitrito mg/L	Nitrato mg/L	P Total (mg/L)
1	0	0	7,2	0,76	60,49	44	-	-	-	0,116	0,001	0,115	0,032
2	110	1,8	6,98	1,3	25,43	43	7,3	0	20,2	0,730	0,004	0,727	0,030
3	790	790	6,9	2,56	29,73	Е	7,29	0	20,8	0,727	0,000	0,727	0,028
4	4	0	6,88	0,92	18,15	28	6,96	0	19,6	1,534	0,003	1,531	0,033
5	11000	7800	6,84	5,41	42,69	103	7,5	0	21,1	1,406	0,003	1,403	0,057
6	35000	7000	7	4,22	43,99	37	7,16	0	21,4	2,242	0,003	2,239	0,062
7	250	130	7	0,75	23,11	20	8,09	0,29	20,3	0,699	0,005	0,695	0,038
8	140	140	6,97	1,31	22,26	29	8,47	0,03	21,6	1,855	0,001	1,853	0,048
9	4900	4900	6,6	5,97	27,08	15	6,84	0,04	23,2	1,212	0,003	1,209	0,045
10	3300	2300	7,01	3,46	38,27	51	7,65	0	22	1,311	0,005	1,306	0,042
11	24000	4900	6,58	4,81	31,04	26	7,43	0	22,4	0,890	0,003	0,888	0,050
12	35000	4600	7,01	3,19	36,59	61	7,23	0	22,7	1,017	0,000	1,016	0,037
13	13000	13000	7,3	6,26	36,56	87	6,72	0,27	23,1	1,214	0,004	1,209	0,050

Legenda: C.T = Coliformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Resultados do mês de Janeiro de 2014

PONTO	CT NMP/100 mL	E. coli NMP/100 mL	рН	Turbidez (NTU)	Cond. (μS)	S. T. (mg/L)	O.D mg/L	Cl (mg/L)	T. Água (°C)	Nitrato (mg/L)	P Total (mg/L)
1	0	0	8,52	0,64	51,5	40	7,48	0,74	26	0,115	0,030
2	540	540	6,79	3,09	24,89	36	6,79	0,03	20,6	0,115	0,020
3	2800	2800	7,13	8,42	37,64	52	6,85	0,07	20,7	0,952	0,032
4	70	70	6,84	1,52	22,4	45	7,65	0,05	20	0,791	0,037
5	170000	170000	6,98	48,8	51,54	104	7,2	0,54	21,9	2,818	0,060
6	240000	240000	7,14	27,8	47,55	48	7,82	0,23	22,1	2,207	0,055
7	110	110	7	2,69	24,64	19	8,52	0	19,7	1,242	0,030
8	130	130	6,8	5,07	22,89	33	8,1	0,25	21,8	0,695	0,042
9	16000	16000	6,7	6,02	28,94	48	7,75	0,06	22,2	0,115	0,033
10	16000	16000	6,95	10,1	42,05	58	8,15	0,05	22,4	1,145	0,038
11	2200	2200	6,52	10,1	33,07	49	6,5	0,11	22,4	0,759	0,023
12	>16000	>16000	7,08	8	37,56	60	7,15	0,29	22,5	0,952	0,037
13	28000	28000	7,4	15,9	39,3	64	7,25	0,28	23,5	1,113	0,060

Legenda: C.T = Coiformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Resultados do mês de Fevereiro de 2014

PONTO	C.T . NMP/100mL	E. coli NMP/100mL	рН	Turbidez NTU	Cond. (μS)	S. T. (mg/L)	O.D. (mg/L)	Cl (mg/L)	T. Água (°C)	N Total (mg/L)	Nitrato (mg/L)	Amônia (mg/L)	Nitrito (mg/L)	
1	0	0	-	0,14	49,37	48	-	-	-	1,352	1,209	0,142	0,001	0,019
2	33	33	6,48	1,52	27,43	40	8,88	0,23	20,6	1,558	1,402	0,156	0,000	0,016
3	1700	1700	6,76	3,73	35,19	32	6,89	0,67	23,4	0,890	0,726	0,162	0,001	0,019
4	9,3	9,3	6,89	1,36	27,65	48	6,18	0,17	22,8	1,561	1,402	0,159	0,000	0,016
5	540000	11000	6,55	8,4	63,87	72	9,2	0,29	22,7	0,497	0,372	0,111	0,013	0,141
6	35000	4000	6,6	3,32	54,18	64	9,97	0,16	22,1	1,118	0,952	0,139	0,027	0,047
7	330	330	6,76	0,61	24,9	52	6,26	0	20,6	0,558	0,405	0,154	0,000	0,016
8	1700	1700	6,78	1,06	23,76	27	8,94	0,11	21	1,567	1,402	0,165	0,000	0,021
9	1700	680	6,93	1,32	31,12	53	6,56	0,93	24,3	0,762	0,662	0,100	0,001	0,022
10	2600	2200	6,76	1,75	49,3	59	6,12	0,18	23,4	0,284	0,115	0,160	0,010	0,029
11	11000	4900	6,67	1,35	35,82	54	3,65	0,006	21,9	0,525	0,372	0,151	0,001	0,014
12	610	300	6,72	2,08	42,22	51	7,3	0,46	23,8	1,465	1,306	0,159	0,001	0,027
13	3300	2300	6,85	0,93	43,04	60	8,5	0,08	24	0,782	0,630	0,150	0,002	0,021

Legenda: C.T = Coliformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Resultados do mês de Março de 2014

PONTO	CT NMP/100mL	E. coli NMP/100mL	рН*	Turb. NTU	Cond. (μS)	S. T. (mg/L)	O.D. (mg/L)	Cl (mg/L)	Temp. Água °C	Amônia (mg/L)	Nitrito (mg/L)	P (mg/L)
1	0	0	7,02	0	50,31	41	7,15	-		0,129	0,003	0,043
2	460	460	7,32	1,48	25,39	33	6,85	0,19	22,7	0,169	0,003	0,043
3	750	750	6,99	7,72	36,7	47	6,56	0,87	21,9	0,171	0,003	0,032
4	23	23	6,8	3,59	28,5	33	6,12	0,25	20,9	0,174	0,004	0,043
5	20000	20000	6,43	2,28	66,25	75	6,62	0,52	24,3	0,159	0,011	0,112
6	4800	4800	6,94	4,35	58,6	51	6,94	0	22,3	0,173	0,035	0,067
7	70	46	7,09	1,53	26,21	38	7,06	0,25	19,2	0,173	0,005	0,043
8	2100	430	7	1,93	24,05	34	7,69	0,11	21,1	0,171	0,004	0,043
9	24000	24000	6,88	1,25	28,71	46	8,25	0,14	21,2	0,167	0,005	0,017
10	9300	9300	7	5,58	45,77	49	7,25	0,22	21,6	0,164	0,004	0,033
11	3200	3200	6,86	3,78	38,05	53	7,12	0	21,9	0,171	0,003	0,037
12	2300	2300	6,48	6,81	42,31	51	6,31	0,01	22,3	0,129	0,005	0,027
13	1500	1500	6,67	2	40,54	55,000	-	0,09	25,5	0,178	0,003	0,033

Legenda: C.T = Coliformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Resultados do mês de Abril de 2014

Pontos	C.T NMP/100mL	E. coli NMP/100mL	рН	Turb. NTU	Cond. (μS)		O.D. (mg/L)	Cl (mg/L)	T. Água (°C)	Nitrato (mg/L)	Amônia (mg/L)	Nitrito (mg/L)	P Total mg/L
1	0	0	6,5	0,16	43,45	61	9,15	-	-	0,008	0,102	0,888	0,020
2	23	3	8,1	4,47	30,24	49	9,17	0,27	18,2	0,007	0,166	2,529	0,022
3	3500	2800	7,15	5,2	31,79	45	7,29	0,67	17,6	0,008	0,154	2,239	0,025
4	79	79	6,5	2,16	20,48	47	7,65	0,37	16,4	0,008	0,156	2,271	0,035
5	21000	21000	6,4	3,73	50,75	49	6,45	0,29	16,9	0,004	0,154	2,239	0,037
6	35000	35000	-	4,91	50,86	52	11,6	0,33	16,3	0,010	0,157	2,304	0,047
7	110	78	6,38	0,05	24	36	8,75	-	15,7	0,008	0,161	2,400	0,045
8	6,8	4,5	6,78	2,06	22,07	27	9,72	-	16,7	0,008	0,159	2,368	0,023
9	7000	5400	6,04	5,65	29,03	34	14,4	-	16,8	0,003	0,154	2,239	0,027
10	3500	3500	6,88	6,51	45,81	55	Ε	-	18	0,002	0,154	2,239	0,020
11	5400	5400	-	4,29	35,36	41	11,77	0	15	0,050	0,154	2,239	0,023
12	2400	2400	6,55	3,83	38,5	39	7,95	0,22	17,1	0,009	0,162	2,432	0,032
13	5400	3500	7,02	7,09	40,72	42	6,57	0	16,2	0,004	0,159	2,368	0,017

Legenda: C.T = Coliformes totais; E. coli = Escherichia coli; Cond.= Condutividade elétrica; S. T= Sólidos totais; O.D = Oxigênio dissolvido; T. água= temperatura da água; N Total = Nitrogênio total; P Total = Fósforo total

Análise de água para a comunidade

Em todas as semanas, com exceção das que foram realizadas as atividades do monitoramento, continuam a ser realizadas gratuitamente análises de água para a comunidade. Certamente a procura pelas análises aumentou nesse novo ano, principalmente pela divulgação informal desse trabalho entre as pessoas. Foram realizadas cerca de 215 análises, distribuídas entre nascentes, poços e riachos da região. "O procedimento para realizar análises de água no CEJMC é simples, basta ir até o colégio, retirar o frasco e as orientações de coleta, e trazer a amostra no dia marcado". A seguir é apresentado o pequeno tutorial elaborado para coleta de amostras de água para análise microbiológica.

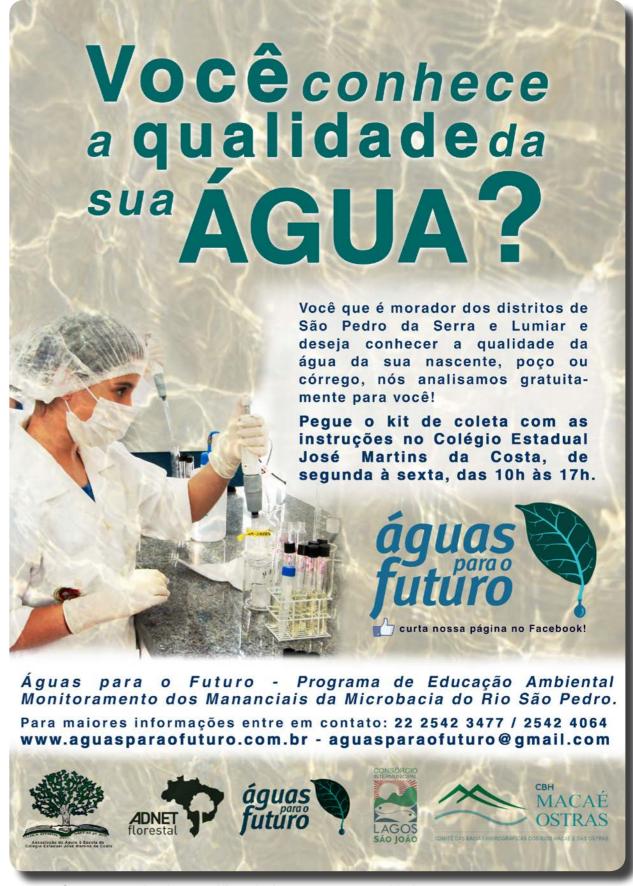
Programa de Educação Ambiental: Monitoramento dos Mananciais da Microbacia do Rio São Pedro da Serra

Guia rápido para coletar amostras de água para análise no CEJMC

Antes de iniciar a coleta da amostra é importante lavar bem as mãos com água, sabão e para finalizar com álcool 70% (misturar 3 partes de água com 7 partes de álcool). Os procedimentos de coleta variam de acordo com a origem da amostra (água de torneira ou água de córrego).

Água de torneira

- 1- Com a torneira fechada, passar um pano limpo com água sanitária diluída (9 partes de água para 1 parte de água sanitária) na torneira e esperar por 2 minutos;
- 2- Abrir a torneira e deixar a água correr por 2 minutos;
- 3- Voltar a torneira à meia secção (apenas um fio d'água), para que o fluxo seja pequeno e não haja respingos;
- 4- Abrir a tampa do frasco e encher com água;
- 5- Fechar o frasco e levar a amostra para o colégio.


Água de córregos e nascentes

- 1-Abrir o frasco de coleta somente embaixo d'água;
- 2- Coletar a amostra com a boca do frasco de coleta contra a corrente:
- 3- Fechar o frasco com a tampa.

ATENÇÃO - Depois de coletada a amostra tem validade de apenas 24 horas. Conservá-la entre 4°C e 10° C. As amostras devem ser entregues até as 14:00, de terca a quinta-feira no colégio.

Qualquer dúvida entrar em contato com: Ruan Stulpen - Tel 22 996-002-801 (vivo) ou com Tom Adnet - tel 21 981-963-668 (vivo)

Folder tutorial para orientar a comunidade na coleta de água.

Cartaz anunciando as análises de água para a comunidade.

Cadastro das análises realizadas para a comunidade

ID	Nome	Origem da amostra
1	Hugo Gomes Osório	Torneira
2	Constancia Heringer (ANF)	Torneira/ANF
3	Constancia Heringer	Torneira/nascente
4	Dircineia Terezinha Marchon	Nascente
5	Dircineia Terezinha Marchon	Torneira/nascente
6	Andreia Amaral Santos Scmott	Torneira/nascente
7	Leonor Balzana	Caixa d'água/nascente
8	Idineia Figueira Schimidt	Torneira/nascente
9	Idineia Figueira Schimidt	Córrego
10	Alexandre Frez Pinto	Nascente
11	Alexandre Frez Pinto	Córrego
12	Ivan Almir Boy	Lago
13	Ivan Almir Boy	Poço artesiano
14	Alfredo Cesar Schimidt	Nascente/ soalheiro
15	Alfredo Cesar Schimidt	Córrego
16	Claudio Paolino	Nascente
17	Lauriene das Graças Ouverney Klein	Poço artesiano 2
18	Lauriene das Graças Ouverney Klein	Córrego
19	Vitor Pombo	Torneira/nascente
20	Vitória da Silva Leal	Torneira/ANF
21	Roni Brazão	Torneira/nascente
22	Roni Brazão	Caixa d'água
23	Thais Keher	Torneira/Nascente
24	Thais Keher	Filtro
25	Roni Brazão	Poço artesiano
26	Ruan Carlo Stupen	Rio Macaé de Cima/galdinópolis
27	Maria Clara Gonçalves	Poço
28	Larissa Blaudt	Caixa d'água
29	Larissa Blaudt	Lagoa
30	Yasmin Novaes	Córrego
31	Yasmin Novaes	Nascente
32	Dircineia Terezinha Marchon/escola	Nascente/escola Vargem Alta
33	Dircineia Terezinha Marchon/escola	Torneira/escola Vargem Alta
34	Dircineia Terezinha Marchon	Bica/estrada
35	Pedro Rodriguez Watts	Nascente
36	Rafael Mussi	Nascente
37	Rafael Mussi	Nascente
38	Áurea Rocha	Rio Macaé (poço do Gianini)
39	Luis Cláudio Rocha	Poço artesiano
40	Leonardo Gama	Nascente

41	Cristiane Passos	Nascente
42	Bruno Mussi	Nascente
43	Larissa Blaudt	Córrego 1
44	Larissa Blaudt	Córrego 2
45	Júnior Santos	Nascente
46	Vitor Pombo	Torneira (601)
47	Lia Caldas	Torneira/nascente
48	Jailton Barroso Eller (Manuela 601)	Torneira/nascente
49	Tom Adnet Moura	<u> </u>
50		Rio Boa Esperança Nascente
	Vítor Heringer	
51	Vítor Heringer	Poço
52	Cristiane Passos	Jeanini Satura Carra Mari
53	Cristiane Passos	Estação Serra Mar
54	Júlio Schuaber	Poço da Usina
55	Isabel do Carmo Shuaber	Nascente
56	Acyr Carvalho	Córrego da Glória
57	Cristiane Rodriguez/codomínio Quarks	Nascente
58	Cristiane Rodriguez/codomínio Quarks	Caixa d'água
59	G1 601 Alunos Vítor	Torneira/nascente
60	G2 601 Alunos Vítor	Torneira/nascente
61	G3 601 Alunos Vítor	Torneira/nascente
62	Catherine Brito Reis	nascente 1
63	Catherine Brito Reis	nascente 2
64	Ramon Ouverney	Torneira/Nascente
65	Ramon Ouverney	Riacho
66	Dircineia Terezinha Marchon	bica
67	Dircineia Terezinha Marchon	nascente/escola
68	Dircineia Terezinha Marchon	torneira/escola
69	Laécia	
70	Sildenir Moreira Costa	Casa/chalé
71	Vanilda Stulpen do Amaral	caixa d´água cima
72	Vanilda Stulpen do Amaral	caixa d´água baixa
73	Aurea - Viguinha	Rio Macaé
74	Aurea - Indiana Jones	Rio Boa Esperança
75	Ruan - Ponte dos Peões	Rio Macaé
76	Sildenir Moreira Costa	cozinha
77	Aurea - Cachoeira São José	Rio Boa Esperança
78	Aurea - Poço Feio	Rio Macaé
79	Ruan - Poço General 3	Poço do General
80	Aurea - Poço Belo	rio Boa Esperança
81	Ruan - Bininho	Coleta extra

82	Ruan - Ponto 3 monitoramento	Coleta extra
83	Aurea - rio bonito	Rio Bonito
84	Adriana Tavares Nascente	Nascente
85	Adriana Tavares Rio	Córrego
86	Adriana Tavares Filtro	Nascente/filtro
87	Alessandra Monteiro	,
88	Alessandra Monteiro	
89	Alessandra Monteiro	
90	Alessandra Monteiro	
91	Renata Benevenuti de Oliveira	Nascente lagoa de cima/Pedra Riscada
92	Renata Benevenuti de Oliveira	Nascente/Torneira cozinha
93	Valdinei Heiderich	Nascente pasto/Pedra Riscada
94	Paulo Sérgio Eller	torneira Boa Esperança
95	Paulo Sérgio Eller	Filtro
96	Regina Lasmar	Filtro
97	Regina Lasmar	
98	Regina Lasmar	
99	Marcelo Santos Florido	Nascente/vale dos peões
100	Marcelo Santos Florido	Nascente/torneira - filtragem de sólidos
101	Marisa Calheiros Alvarenga	
102	Levi Stulpen do Amaral	Poço artesiano
103	Levi Stulpen do Amaral - Geanini	Rio Macaé
104	Jonas Donagema Miranda	Córrego Santiago
105	Rafael Cordeiro	Nascente-santiago
106	Valdinei Heiderich	
107	Coleta Extra	Poço do Beninho
108	Coleta Extra	Ponte no córrego da Tapera
109	Coleta Extra	Benfica/antes do Bar do Geraldo
110	Coleta Extra	Rio São Pedro/quadra de esportes
111	Geisiele Frez	Ponte Nemésio Schimidt
112	Eunice Quintanilha	Córrego d'glória
113	Paulo Sérgio Eller	Nascente/casa
114	Paulo Sérgio Eller	Nascente sítio
115	Laerte	Nascente/Pedra/ poço Bello
116	Adilson Eller	Nascente
117	Marcos Roney Cunha	Nascente/anel bananeira
118	Marcos Roney Cunha	Nascente caixa casa
119	Hesli Sales da Costa	Nascente/casa
120	Hesli Sales da Costa	Nascente/vizinho
121	Telma Rutman	Filtro
122	Telma Rutman	Mangueira

123	Telma Rutman	Nascente/Banheira
124	Dilamar Barroso Blaudt	Sítio Santa Luíza
125	Dircineia Teresinha Marchon	
126	Tânia Regina Barroso	
127	Renan Ouverney Oliveira	Nascente
128	Heloisa Helena de Gomes Barbosa	Nascente/caixa d'água
129	Heloisa Helena de Gomes Barbosa	Nascente
130	Ella Débora Xavier Rodriguez	Águas de Nova Friburgo
131	Ella Débora Xavier Rodriguez	Água do poço
132	Livio Faltz Lassarote da Silva	Nascente de casa
133	Livio Faltz Lassarote da Silva	Nascente do Vovô
134	Livio Faltz Lassarote da Silva	Córrego Santa Catarina
135	Leda das Graças Frez Ichikwa	Nascente Teca
136	Leda das Graças Frez Ichikwa	Nascente bica
137	Vítor Pomba	
138	Vítor Pomba	
139	Paulo Sérgio Eller	Torneira
140	Paulo Sérgio Eller	Nascente
141	Evanil	Torneira
142	Evanil	Nascente
143	Juscelino	Lagoa Lumiar
144	Tom Adnet Moura	rio Macaé
145	Marcos Roney Cunha	Nascente viveiro
146	Vilder Marcos Eller	Nascente/sítio
147	Vilder Marcos Eller	Nascente/casa
148	Carlos Eduardo	Nascente/manuel knup
149	Rodrigo e Sol	torneira cozinha/Lumiar
150	Rodrigo e Sol	filtro
151	Rodrigo e Sol	nascente
152	Rodrigo e Sol	caixa nascente reserva
153	Josele Gripp	
154	Leda das Graças Frez Ichikwa	
155	Coleta Extra (CE)	Encontro dos rios - Rio Bonito
156	Jorge Samuel da Cruz	Nascente, torneira
157	Coleta extra	Rio Macaé em frente a Casa do Tom
158	Coleta extra	Encontro dos rios- Rio Macaé
159	Coleta extra	Viguinha
160	Thais Keher	
161	Coleta extra	Rio Boa Esperança, antes de encontrar com SP
162	Karolayne Jacinto	
163	Karolayne Jacinto	
164	Coleta extra	Encontro dos rios - em baixo da ponte
165	Coleta extra	Rio Boa Esperança, Pousada Colibris

166	Roberto Pagnoncelli	Nascente, torneira Pousada Encontro dos Rios
167	Evanil	Nascente Nascente
168	Evanil	Casa Evanil
169	Evanil	Casa Vania
170	José Luiz Manhães	Nascente Loteamento
171	Michele Pereira de Souza	Rio Macaé, Vale dos Peões abaixo da Viguinha
172	Tom Adnet Moura	Poço Mãe
173	Dilmo Mozer	Cachoeira
174	Dilmo Mozer	Lei
175	Dilmo Mozer	Sitinho
176	João Pedro	Nascente
177	Andrea Bianquine	ruscente
178	Erica Lima	nascente
179	Erica Lima	Poço
180	Suely	Nascente Cima
181	Suely	Nascente baixo
182	Rodrigo e Sol	Torneira Cozinha
183	Rodrigo e Sol	Torneira Tanque
184	Rodrigo e Sol	Nascente Bananal
185	Thais Keher	rio Macaé
186		Cachoeira
187	Danilo Sangy	Lei
188	Danilo Sangy	Sitinho
189	Danilo Sangy Renato	Nascente
190	Renato	118000110
-	Coleta Extra	Poço Tio Levi
191	Coleta Extra	
192 193	Coleta Extra	Lagoa Lumiar Galão Evanil
_	Maria Clara Adnet	
194 195	Coleta Extra	Poço Maria Clara Galão Evanil
196	Coleta Extra	Correio Lumiar
-	Coleta Extra	
197 198	Pedro Losse	Rio Macaé pré-Boa Esperança Pasto, Nascente
198	Pedro Losse	·
-		Torneira grota
200	Luar Nicley Vicna	Page
	Nirley Vicna Cristiane Passos	Poço
202		
203	Cristiane Passos Coleta Extra	Correio 1
-		
205	Coleta Extra	Correio 2
206	Coleta Extra	Correio 3
207	Coleta Extra	Quadra Disciple de Nahi (As Jade de Dinaza)
208	Coleta Extra	Riosinho do Nabi (Ao lado do Dinaza)
209	Alex Macedo	
210	Michelle Laignier	
211	Michelle Laignier	

Alunos preparando caldo para as análises de amostras de água para a comunidade.

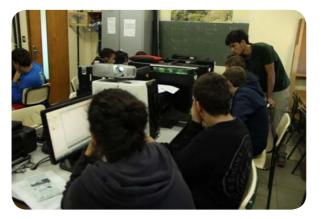
Geotecnologias

O laboratório de geotecnologias fez uso principalmente da estrutura e espaço existente no laboratório de informática da escola. Atualmente possui três turmas com desenvolvimento de atividades focadas em geotecnologias, e também deu suporte aos trabalhos e atividades de campo dos outros laboratórios principalmente no que tange a realização da expedição pela Bacia Hidrográfica do Rio Macaé.

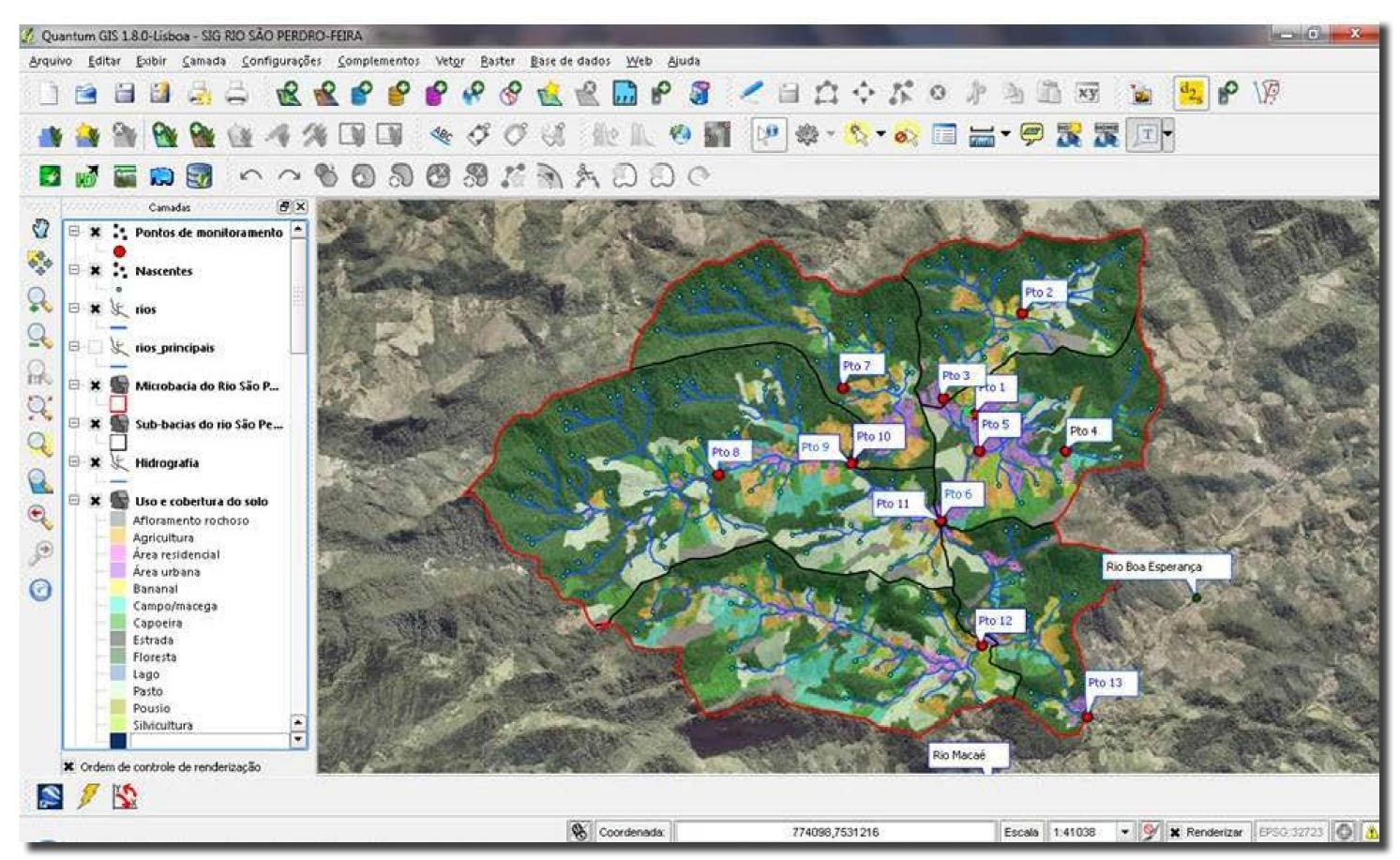
De forma efetiva, o laboratório vem procurando inserir as geotecnologias no cotidiano escolar das turmas de nono ano e primeiro ano do ensino médio, no sentido de possibilitar uma construção de conhecimento ao longo dos próximos anos dessas turmas na escola, através da capacitação conjunta de alunos e professores.

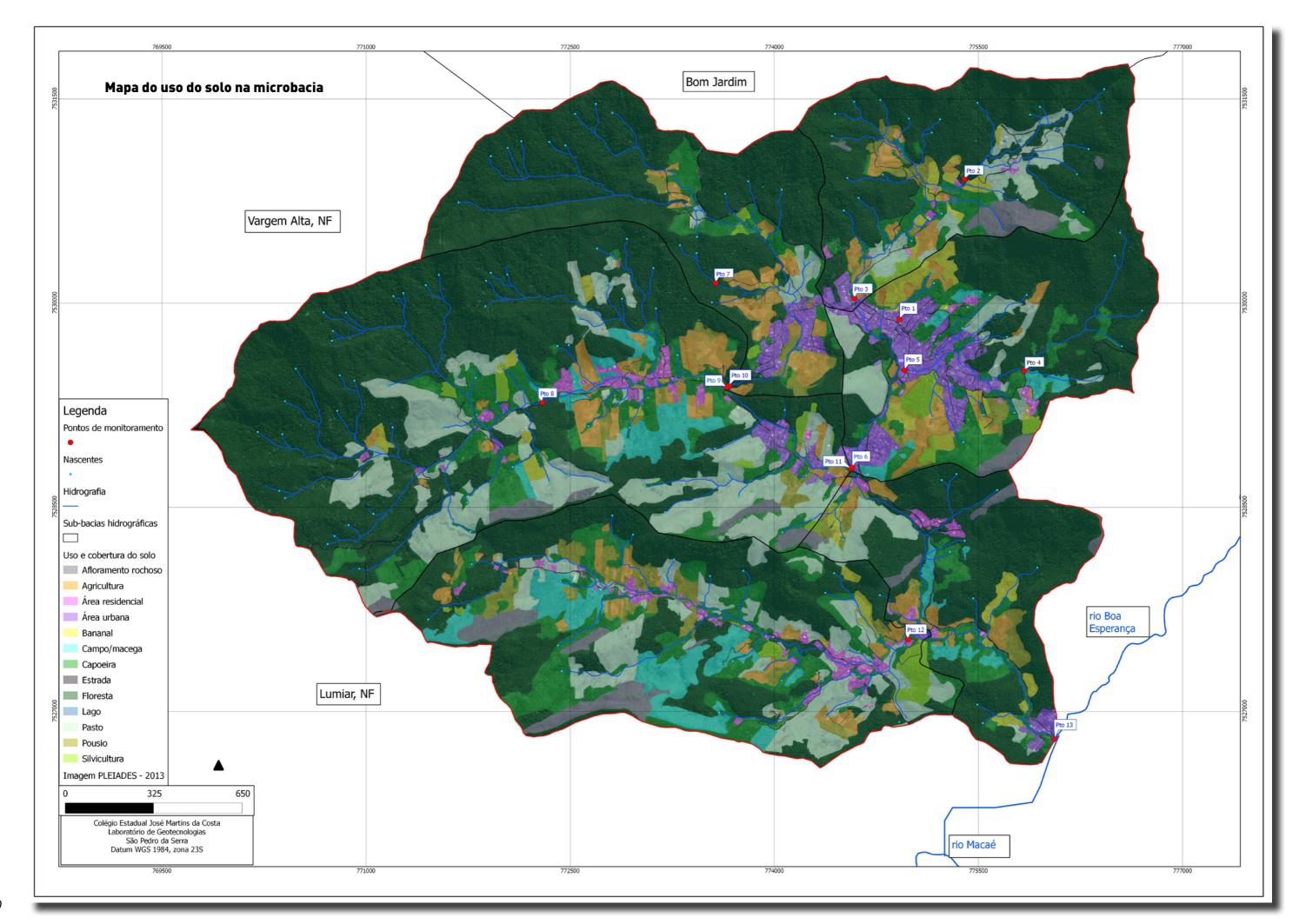
As atividades foram desenvolvidas nas aulas vagas e nas aulas de geografia e educação física. Teve por objetivo a subida nas principais montanhas da região, elaborando inclusive o mapa dessas trilhas. Nessa atividade pretendia-se capacitar toda a turma, e também os professores, no uso das geotecnologias, além da metodologia do *Dragon Dreaming*, possibilitando a continuação de atividades relacionadas, nos próximos anos na escola. Esse conteúdo faz parte do currículo mínimo previsto pela secretaria de educação, assim, será viável dar sequencia nessas atividades nos próximos anos, com as turmas de primeiro ano.

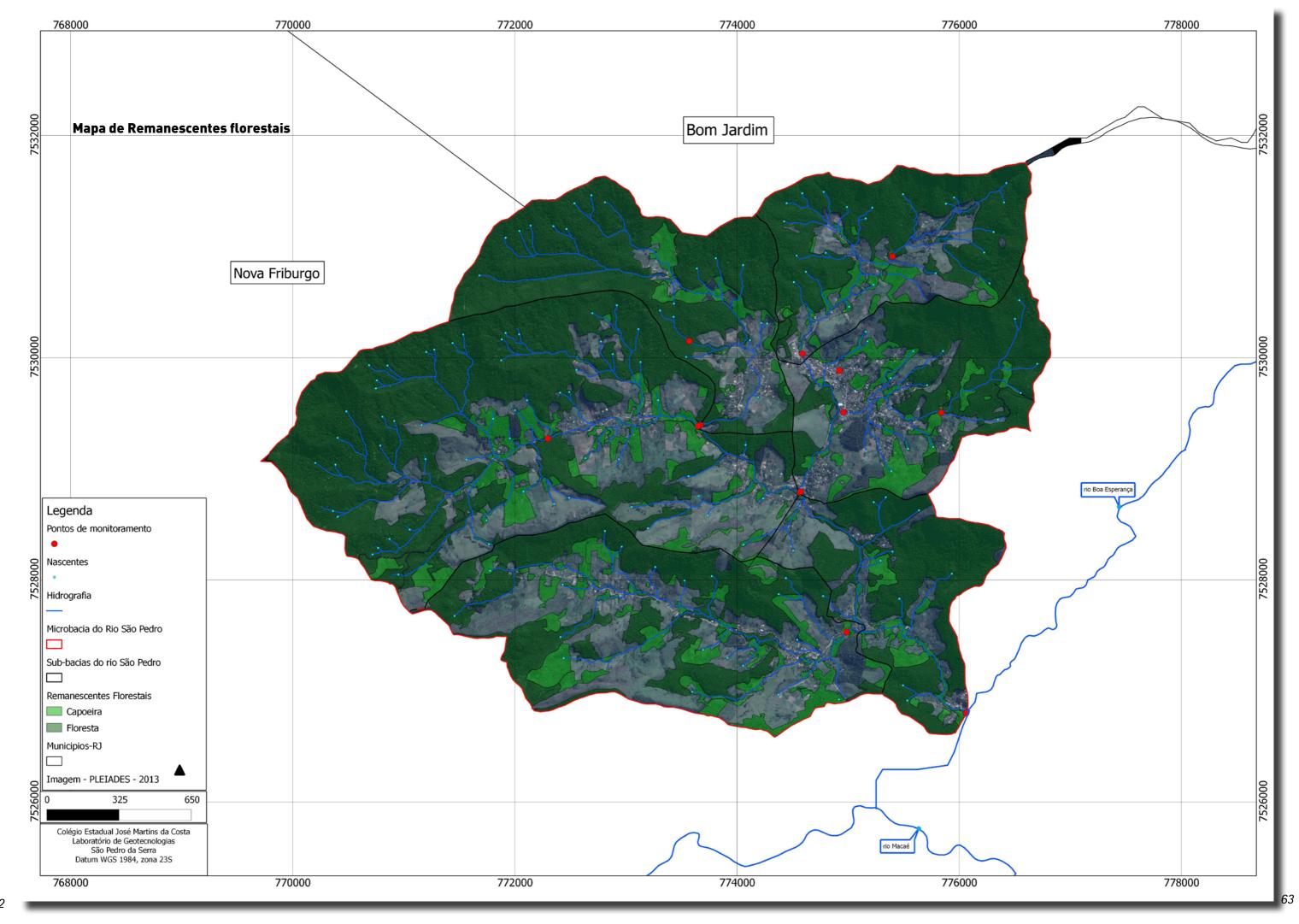
No total, decorrente da parceria com o programa Rio Rural, foram realizados 50 mapas de propriedades rurais, com foco nas áreas produtivas das mesmas, objetivando a construção do projeto necessário a liberação do recurso destinado a boas práticas e aumento na produção da agricultura familiar.

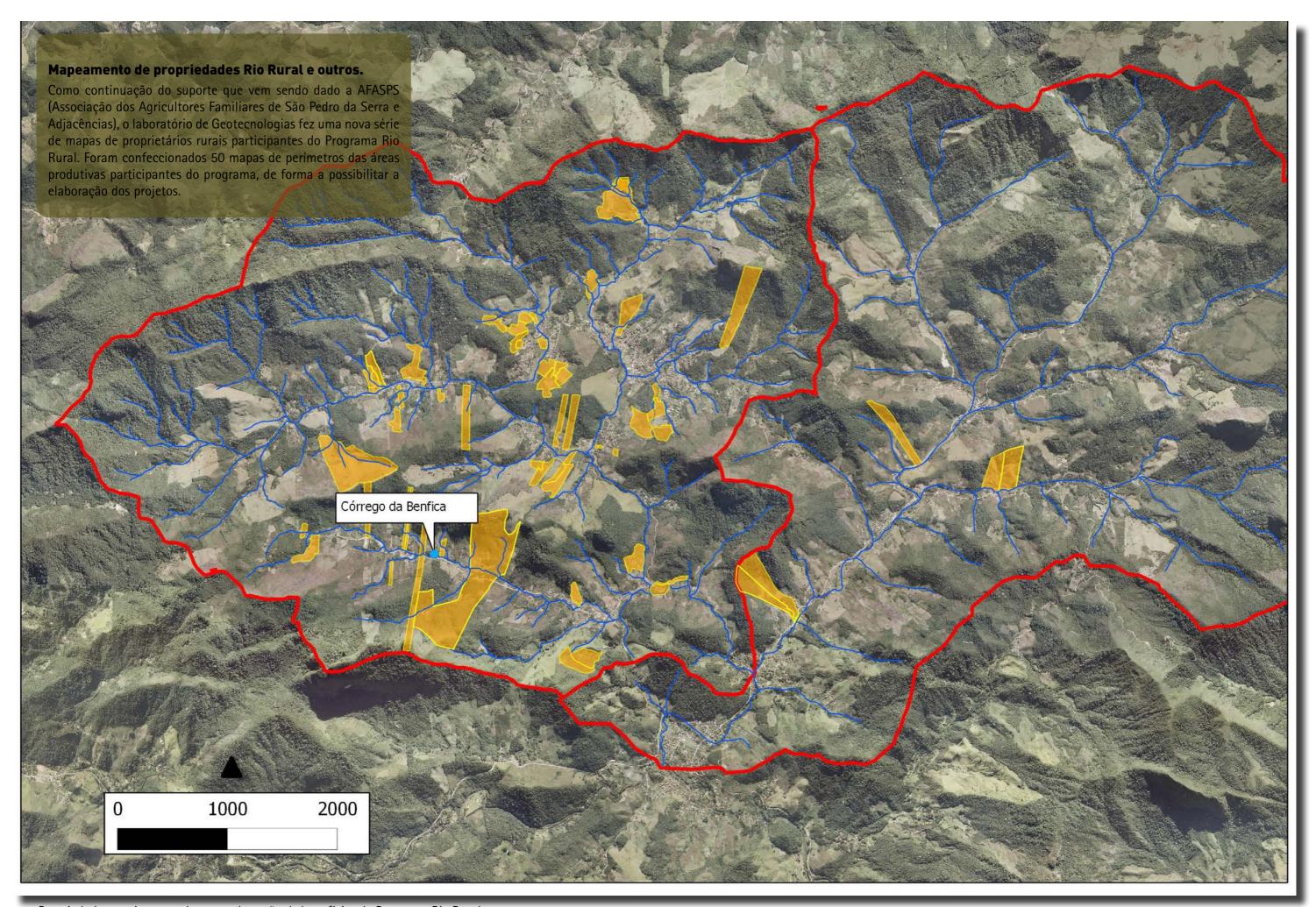

Durante as apresentações realizadas pelos alunos, sobre os resultados parciais alcançados pelo projeto, uma das informações que causaram destaque, foram os resultados do mapeamento do uso e cobertura do solo na área da microbacia. Com destaque para a grande e contínua cobertura florestal que recobre quase toda a cabeceira da microbacia, somada a expressividade de áreas de pastagem, que sobrepõe em quase o dobro, com relação as áreas agrícolas.

Laboratório de geotecnologias




Aprendendo geotecnologias - Sistema de informação geográfica, GPS etc.




Google Earth - ferramenta poderosa para o ensino da Geografia

Janela do Quantum GIS com a base cartográfica da microbacia.

Atividade prática de segurança e procedimentos gerais no Espaço de Ciências (EC)

Com objetivo principal de prevenir eventuais acidentes, foram realizadas duas atividade focadas em práticas e procedimentos gerais de segurança no Espaço de Ciências José Fernando Silva Mello.

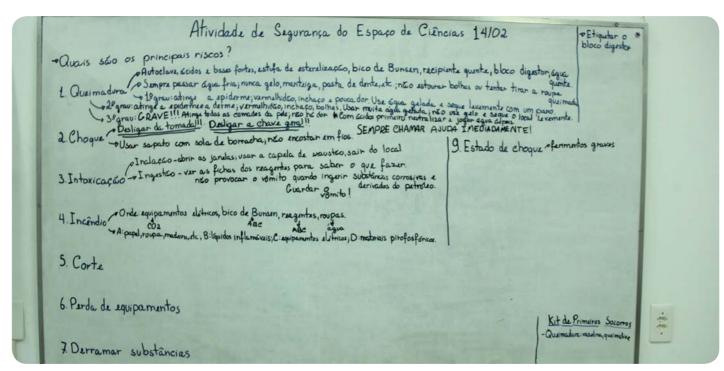
Diversos foram os temas abordados nas reuniões, com destaques para:

- A importância da atividade, seus objetivos e metodologia planejada, a necessidade de implantação de uma "cultura de segurança".
- Quais são os procedimentos gerais do laboratório (normas básicas que todos devem seguir)!
 - Quais os principais elementos de risco encontrados no laboratório?

Cortes, queimaduras, contaminação-intoxicação-inalação e choque elétricos.

Cada um dos assuntos foi abordado especificamente, através de discussões abordando as principais maneiras de prevenção, bem como características de cada uma das situações de sinistro, e a forma mais eficiente e correta de lidar com cada uma das situações.

Como resultados dessas atividades, foram elaboradas listagens de normas e procedimentos gerais do laboratório, bem como uma cartilha de segurança contendo informações relevantes sobre as exposições de risco no laboratório, as formas de prevenção e controle, e ações de emergência. Essa cartilha contém como anexo as fichas técnicas dos reagentes utilizados no espaço de ciências.



Fotos das atividades de segurança.

Fotos das atividades de segurança.

67

REGRAS GERAIS

ESPAÇO DE CIÊNCIAS JOSÉ FERNANDO SILVA MELLO - (ECJFSM)

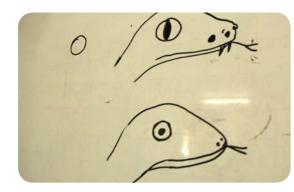
- 1 Apenas é permitida a entrada no Espaço de Ciências de pessoas autorizadas.
- 2 Nunca trabalhar sozinho no Espaço de Ciências.
- 3 É obrigatório o uso do jaleco de mangas compridas. AO SAIR DO ESPAÇO, RETIRAR O JALECO!
- 4 Utilizar os equipamentos de proteção individual EPI (jaleco, luvas, touca, máscara, óculos, etc.) de acordo com a orientação do professor e/ou monitor.
- 5 Utilizar calças compridas e sapatos fechados. Não é permitido a permanencia no Espaço de Ciências utilizando chinelos e sandálias abertas.
- 6 Tomar os devidos cuidados com os cabelos, mantendo-os presos e usando toucas.
- 7 Em decorrencia do alto risco de contaminação, não é permitido beber, comer, fumar ou aplicar cosméticos dentro do Espaço de Ciência.
- 8 Para utilizar-se de produtos químicos ou qualquer equipamento, é necessário auxílio e orientação/autorização de professores, técnicos ou monitores.
- 9 Manter o ambiente de trabalho sempre limpo e organizado, evitando obstáculos que possam dificultar o trabalho.
- 10 Não trabalhar com material imperfeito, principalmente vidros que tenham arestas cortantes ou apresentem rachaduras. Todo material quebrado deve ser descartado de maneira apropriada.
- 11 Não deixar sobre a bancada, vidros quentes e frascos abertos, caso necessário, alertar aos companheiros a situação.
- 12 Ler sempre o procedimento experimental com a certeza de ter entendido todas as instruções. EM CASO DE DÚVIDAS, ALGO ANORMAL OU ACIDENTE, CHAME O PROFESSOR, TÉCNICO OU MONITOR IMEDIATAMENTE!
- 13 Cada equipe é responsável pelo seu material, portanto, ao término de uma atividade prática, tudo o que você usou deverá ser limpo e guardado em seus devidos lugares.
- 14 É PROIBIDO O USO DE APARELHOS CELULARES E SMARTPHONES DENTRO DO ESPAÇO DE CIÊNCIAS!

ATENÇÃO E CUIDADO AO TRABALHAR NO ESPAÇO DE CIÊNCIAS:

- 1 O material disponível no Espaço de Ciências é de uso exclusivo para as aulas práticas, por isso não desperdice ou faça brincadeiras com ele.
- 2 O Espaço de Ciências é um local de trabalho sério e não para fugir das aulas teóricas. Desenvolva sua responsabilidade e profissionalismo.
- 3- Caso seja a última pessoa a sair do Espaço de Ciências, realize o"check list", tranque a porta e guarde as chaves na secretaria.
- 4 Antes de descartar algo, consulte o Plano de Gerenciamento de Resíduos. Solicite o auxílio do professor, técnico ou monitor sempre ao descartar substâncias duvidosas ou perigosas.
- 5 Conheça bem os reagentes informando-se sobre riscos, toxicidade e cuidados no uso dos mesmos.
- 6 Nunca cheirar ou provar nenhuma amostra ou substância em manipulação.
- 7 Nunca pipetar com a boca, use o equipamento apropriado.
- 8- Rotular, identificar e datar todos os materiais produzidos.
- 9- Para diluir ácido, adicioná-lo a água primeiro e nunca o contrário.
- 10 Descontaminar antes de descartar, todo material sob suspeita de contaminação biológica.

Palestras sobre biodiversidade, animais peçonhentos e segurança.

Foram realizadas palestras em todas as turmas do Ensino Fundamental do Colégio, sendo discutidos assuntos relacionados a identificação correta das espécies, a diversidade existente, o perigo associado aos animais peçonhentos, bem como a forma de lidar em caso de encontros com esses animais. Nestas oportunidades ficou explícito no relato dos alunos a intensa ocorrência de encontro por parte de moradores da região com esses animais, tendo essa palestra o objetivo de dar maior intimidade dos alunos com esse assunto, com orientações de como proceder em caso de encontro e até de possíveis acidentes.



Palestras sobre biodiversidade, animais peçonhentos, segurança e emergência.

Equipe reunida na praça de São Pedro antes de subir o Pico da Sibéria.

Na trilha para o Pico da Sibéria

Alunos explorando o Pico da Sibéria.

Vista do alto do Pico da Sibéria para as cabeceiras do rio Macaé.

Equipe reunida no Pico da Sibéria.

Amanhecer do dia na Pedra Eller.

Celebração do dia Mundial do Meio Ambiente - Caminhada para a Grota Funda, vale do rio Bonito.

O Jeep utilizado no suporte das atividades de campo.

Vista da microbacia do rio Boa Esperança, da Pedra Eller.

Sabado letivo integrado com atividades com alunos dos colégios de Lumiar e São Pedro.

Áreas agricolas e florestadas na microbacia.

Atividade em área de agricultura familiar: colheita de repolho doado para reforçar a merenda .

Banho de rio na Grota Funda, dia Mundial do Meio Ambiente.

Vista da vila de São Pedro do alto da Pedra Eller.

Rafting no rio Macaé.

Rafting no rio Macaé.

Banner do projeto apresentado no Encontro Nacional de Comites de Bacias Hidrográficas

áquas

APRESENTAÇÃO

Programa de Educação Ambiental - Águas para o Futuro -Monitoramento dos Mananciais da Microbacia Hidrográfica do Rio São Pedro da Serra

RESPONSÁVEL PELO PROJETO:

EQUIPE ADNET FLORESTAL
Coordenação Genal - Pedra Adhet Moura - Engenheiro Florestal, Msc. Labaratário de Geotecnologias - Tam Adnet Moura - Engenheiro Florestal
Laboratário de Aguars - Ruan Stulpen Veiga - Biólogo, Labaratário de Linguagens- Pedro Kiua - Cincesta e Produtor Cultural
www.aspagarafolium.com.br
squapparofultura dispinal com
squapparofultura dispinal com
squapparofultura dispinal com

PÚBLICO ALVO

APRESENTAÇÃO

Desde 1986, a equipe docente do Colégio Estadual José Martins da Costa (CEIMC) vem promovendo a Educação Ambiental como eixo de sua proposta político pedagógica. O primeiro projeto interdisciplinar de Educação Ambiental do CEIMC foi desenvolvido, em 1988, quando, a patrir de uma palestra da FEEMA sobre a poluição dos rios, os alunso, orientados pelo professor de Biologia, resolveram fazer um levantamento sobre a situação de sameamento básico em São Petro da Serra. O principal projeto de Educação Ambiental deservolvido pela equipe do CEIMC, por sua relevância e antiguidade, de o trabalhor Precevação dos Mananciais do Rio São Pedro", realizado de 1999 a 2008, que visava monitorar, com freqüência anual, a qualidade das águase em nove pontos relevantes da microbacia.

Como fruto e continuidade dessa tetabalho, o Programa de Educação Ambiental Águas para o Futuro - primeiro propama de Educação Ambiental financiado pelo Comité de Bacia Hidrográfica dos rios Macaê e das Ostras com recursos da cobrança pelo uso da água - vem produzindo e divulgando informações relativas à área drenada pela microbacia do Rio São Pedro da Serra. Os principais objetos de pesquisa são a qualidade dos recursos hidricos, as características da fione e da fauna, os monumentos geológicos, os tipos de uso dos solos existentes dentre outras informações relevantes. Hoje com apoia do CBH Macaê e demais colaboradores, as análises da qualidade da água podem ser feitas pelos alunos na própria escola. São analisados 14 parâmetros (microbiológicos efisico-químicos) com periodicidade mensal em 13 pontos importantes da microbacia.

Nesse contexto, pretende-se possibilitar o acesso a ferramentas de monitoramento da qualidade so cicombiental que propiciem informações capazes de orientar o processo de tomada de decisões envolvido na gestão ambiental. Desta forma, o programa Águas para o Futuro contribui para a sensibilização necessária à mudança os paráticas e valores no sentido da implantação de uma proposta de desenvolvimento sustentável, na

OBJETIVO GERAL

Promover a conservação dos recursos hídricos da Bacia Hidrográfica do Rio Macaé, propondo a construção de instrumentos que facilitem a atuação dos cidadãos no contexto das políticas públicas participativas, além de efetivar e divulgar a atuação do Comitê de Bacias Hidrográficas dos rios Macaé e das Ostras (CBH Macaé e das Ostras).

OBJETIVOS ESPECÍFICOS

- Sensibilizar moradores e visitantes sobre a necessidade de preservação do Rio Macaé e de seus mananciais;

- Fornecer instrumental técnico-científico, teórico e político para subsidiar a participação da comunidade escolar do CEIMC e da comunidade extraescolar nos processos decisórios envolvidos nos diversos conselhos, projetos e fóruns participativos ambientais implantados na região:

na regialo;

- Monitorar indicadores de qualidade ambiental relativos à qualidade dos recursos hidricos, à situação da flora, da fauna e aos tipos de uso do solo da região drenada pela rede hidrográfica da microbacia do Rio São Pedro, parte do 5 º e do 7 º distritos de Nova Friburgo-RJ. com base em metodologias participativas de pesquisa, envolvendo alunos, professores e comunidade local;

- Atender às demandas da comunidade local no que tange à análise da qualidade das águas de nascentes e cursos d'água que abastecem loteamentos urbanos ou propriedades rurais ou mesmo da qualidade da água fornecida pela Concessionária Águas de Nova Friburgo;

- Montar um banco de dados, com documentos, estudos e informações (históricas, ambientais, sociais, econômicas, culturais) sobre a região;

Elaborar material educativo (filme, mapas e folder), divulgando os resultados das pesquisas e estudos previstos no projeto e o CBH Macaé e das Ostras;

- Apresentar os resultados obtidos em três eventos:

- Criar no C. E. José Martins da Costa um polo de atuação e formação profissional que gere multiplicadores das ações desenvolvidas no projeto, dando suporte e exemplo a ser seguido por outras microbacias afetadas por processos de degradação das condições ambientais, sociais, econômicas e culturais;

- Divulgar a atuação do CBH Macaé e das Ostras junto às comunidades locais.

Laboratório de Águas

Acompanha mensalmente a qualidade das águas de forma participativa em 13 pontos importantes do rio São Pedro da Serra, além de analisar gratuitamente amostras de água de nascentes, poços e riachos para toda a comunidade.

Laboratório de Geotenologias Realiza o mapeamento de rios, trilhas, estradas e propriedades rurais, organizando um banco de dados para uso didático e livre consulta pela comunidade.

Laboratório de Linguagens

Trabalha a organização, comunicação e a divulgação de informações socioambientais, por meio da produção de materiais digitais, impressos e audiovisuais.

A implementação do Águas o Futuro vem sendo apoiada por uma metodologia colaborativa de criação e gestão de projetos sustentaves conhecida como Dragon Dreaming. Desenvolvida e aplicada a mais de 20 anos pela fundação Gaia da Australia Ocidental, tem por fundamento promover e valorizar a sabedoria coletiva para o fortalecimento de comunidades, crescimento pessoal e o serviço a terra. Professores e Estudantes dos ensinos fundamental e médio do Colégio Estadual José Martins da Costa, agricultores, moradores e turistas da Região Hidrográfica VIII do Estado do Rio de Janeiro.

Cotego Estateud. Jost Merinio de Costa A escola é uma importante referência na vida das comunidades. Nos lugares mais remotos onde a presença do Estado parece sempre aquém do necessário, certamente se encontrará uma escola. Além do papel que exerce na formação das pessoas, sua influência social precisa ser cada vez mais recohnecida e fortalecida nesses momentos em que a sociedade brasileria clama por revalorizar a educação¹. Como espaço de geração de conhecimento, transmissão de valores ou mesmo de defesa civil, a escola está no centro do debate sobre sustentabilidade. Afinal, faz parte da sua missão orientar as presentes e futuras gerações sobre as mudanças sociais e ambientais sem precedentes com as quais o mundo se defronta atualmente¹.

PRINCIPAIS RESULTADOS

NINCIFIAIS RESULTADOS

Diversos ãos os resultados já obtidos e outros tantos ainda estão em andamento no projeto.

cialmente destacamos o mapeamento do uso e cobertura do solo da microbacia e também
s subbacias que a compõe. Ao longo de inúmeras atividades de campo, vem sendo realizado
mapemamentos de diversas feições ambientais da região, com destaque para os monumentos geológicos, pontos e roteiros turísticos, estradas, trilhas, fontes de degradação ambiental, áreas prioritárias para restauração florestal, dentre outras informações relevantes.

dos principais afluentes do microbacia do rio São Pedro da Serra em 10 meses seqüenciais - de Setembro de 2013 há Julho de 2014. Além dos 13 pontos de monitoramento, foram feitas mais de

Outro resultado expressivo a construir admine.

Outro resultado expressivo à a continua configuração da escola como um centro de referência em informações socioambientais para a comunidade: já foram reunidos mais de 30 artigos, monografias e teses desenvolvidas na região, além de praticamente todos os documentos oficiais de planejamento e zoneamento da região, bem como documentos históricos. Merece destaque ainda a construção e organização de um sistema de informações geográficas (SIGI) de grande utilidade para a gestão territorial, acessível para a comunidade.

nepresumers amments no monobocio Distribuição des propriedates atrendidas. Durante o processo de elaboração do Plano de Recursos Hidricos foram organizadas rodas de conversa para apoiar a participação da comunidade nas consultas populares do plano. O Águas para o Futuro vem contribuindo também na elaboração do plano municipal de saneamento, na revisão do plano diretor municipal bem como no diagnóstico socioambiental do alto macaé, parte do programa Produtor de Águas da ANA.

de produção de informações científicas.

- Trabalho integrado à um Laboratório de Linguagens, otimizando a

PONTOS POSITIVOS

Iradanio integrado a um Ladoratorio e Linguiagens, otimizando a
organização e difusão desas informações para a comunidade.
 Projeto fundamentado no longo histórico de pesquisas realizadas na
microbacia de São Pedro da Serva.
 Equipe dos técnicos e coordenadores composta por moradores e exalunos da escola.
 Convivio diário da equipe com a comunidade escolar e interativa em

Martins da Costa como uma das melhores escolas públicas do Estado do Rio de Janeiro, com excelenter essultados alcançados na avaliação estadual, ficando em primeiro lugar do Estado no Indice de Desenvolvimento Escolar do Rio de Janeiro (IDERI) e a quatra melhor nota no Sistema de Avaliação da Educação do Rio de Janeiro (SAERI). Buscamos assim, contribuir para o fortalecimento da cidadania e efetivar o direito ao meio ambiente equilibrado e sadio, previsto no artigo 25% da Constituição hassileiro.

seu otidiano.

- Uso de metodologias transparentes e participativas na solução de questões e planejamento das atividades.

- Transmissão de tecnologias sociais de elaboração e gestão colaborativa, empoderando a comunide escolar na elaboração de projetos.

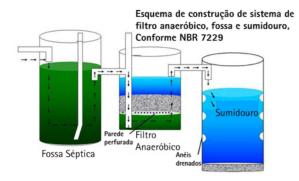
- Uso de software livre para o estudo das geotecnologias.

PROPOSTA DE PROJETO

SANEAMENTO BÁSICO NA MICROBACIA DO RIO SÃO PEDRO DA SERRA

Objetivo

Contribuir para a melhoria da qualidade das águas do rio Macaé promovendo e difundindo diferentes alternativas de saneamento básico para residências e criações de animais localizadas na microbacia do rio São Pedro.


Público alvo:

Moradores e produtores da microbacia do rio São Pedro, focado em residências e criações de animais. Caso não se atinja o número esperado de pessoas interessadas, os sistemas poderão ser implementados no restante da área da microbacia do rio Boa Esperança.

- Implementar 20 fossas sépticas biodigestoras modelo Embrapa.
- Implementar 20 fossas sépticas tradicionais (fossa, filtro e sumidouro)
- Implementar 2 unidades demonstrativas de biodigestor.
- Implementar 10 unidades de jardim filtrante modelo Embrapa.
- Promover Curso para a comunidade sobre alternativas de saneamento
- Solucionar o saneamento do CEJMC.
- Produzir um vídeo documentário sobre o projeto (mínimo de 20 minu-
- Produzir uma cartilha sobre saneamento em área rural.
- Produzir folder sobre o projeto.
- Monitorar e quantificar os impactos da implementação do projeto na qualidade das águas do rio São Pedro.
- Promover ações de educação, comunicação, sensibilização e mobilização socioambiental nas escolas da região.

Alternativas de Sistemas de Saneamento

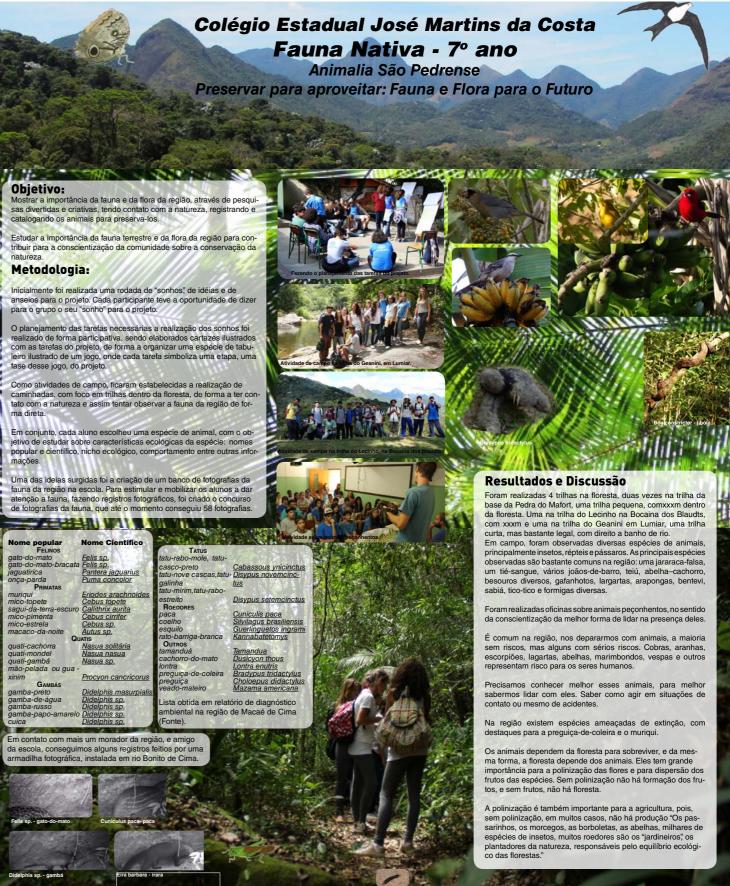
Sistema convencional: Fossa, filtro e sumidouro

- Sistema convencional de saneamento básico individual, indicado pelo
- Tratamento anaeróbico;
- Saneamento de "água negra e água cinza";
- Vida útil estimada em 50 anos:
- Sistemas para até 10 pessoas;
- Não é possível acompanhar o resíduo que sai pelo sumidouro;

Biodigestor de concreto

- Maior capacidade de suporte (até 60 pessoas):
- Sistema de decomposição biológica (biodigestão);
- Produção de biogás;
- Utilização do esgoto tratado como biofertilizante:

Fossa Séptica Biodigestora - EMBRAPA



- Não necessita de limpeza das caixas:
- O vaso sanitário deve demandar no máximo 10 litros por descarga;
- É necessário evitar o uso de cloro e desinfe-
- Sistema de saneamento individual indicado para áreas rurais;
- É possível utilizar o esqoto tratado como biofertilizante;
- Funciona apenas para "água negra":
- Tem necessidade de manutenção mensal:
- As caixas devem ser vedadas para evitar a entrada de oxigênio;
- O sistema deve ser cercado para proteger as tampas das caixas;
- Não libera odores desagradáveis;

Jardim Filtrante - EMBRAPA

- Destinado ao tratamento da "áqua cinza";
- Necessita de espaço útil para implementação;
- Necessário colocar uma caixa de retenção de sólidos e uma caixa de gordura, antes do jardim:
- Deve ficar saturado de água;
- Instalação simples;
- Ambiente agradável e bonito com flores.

Resultados

Foram mensuradas 240 árvores, de 57 diferentes espécies distribuídas em 16 famílias botânicas. A maioria das árvores possui porte pequeno, com diâmetro (DAP) menor que 20 cm. A palmeira Juçara foi a espécie com maior densidade, do total, foram 158 indivíduos, 65% dos inventariados.

A floresta é sombreada, possui sub-bosque aberto, o dossel é contínuo com cerca de 15 a 20 metros de altura, com algumas árvores emergentes, que alcançam até 25m. A camada de serapilheira é espessa e contínua, ao longo de toda área da parcela.

As florestas prestam diversos serviços, dentre eles os denominados serviços ambientais, relacionados com a produção de água, estabilização e proteção dos solos, produção de oxigênio, valor paisagístico, abrigo para fauna e flora entre outros.

As florestas possuem também valor econômico, através de matéria prima madeireira e não-madeireira, alimentícios, fibras e medicinais. Possuem grande valor para atividades ecoturísticas e de educação ambientel

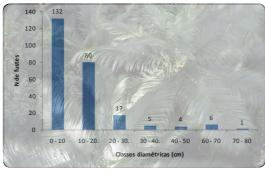


Gráfico com a distribuição fustes mensurados, em classes diamétricas

Família	Nome popular	Nome científico	Nº de	Nº de
			indivíduos	Fustes
Arecaceae	juçara	Euterpe edulis Mart.	157	157
Bignoniaceae	îpê-amarelo	Handroauthus sp.	2	2
Cardiopteridaceae	congonha	Citronella gongonha (Mart.) R.A.Howard	1	1
Cordiaceae	louro	Cordia sp.	1	1
Fabaceae Mimosoideae	pau-jacaré	Piptadenia gonoacantha (Mart.) J.F.Macbr.	3	3
Fabaceae Papilionoideae	andira	Andira sp.	1	1
-	angelim	indet. 40	1	2
	pau-gambá	Piptadenia paniculata Benth.	1	1
Euphorbiaceae	tapiá	Alchornea triplinervia (Spreng.) Müll.Arg.	2	2
Lacistemataceae	lacistema	Lacistema pubescens Mart.	1	1
Lauraceae	canela-pitanga	Nectandra sp.	2	2
Lecythidaceae	jequitibá-branco	Cariniana estrellensis (Raddi) Kuntze	2	2
Meliaceae	canjerana	Cabralea canjerana (Vell.) Mart.	3	3
	carrapeta	Guarea macrophylla Vahl	1	1
	catiguá	Trichilia casaretti C.DC.	4	4
Mortas em pé	morta	morta	5	5
Nyctaginaceae	joão-mole	Guapira opposita (Vell.) Reitz	5	5
Rosaceae	pessegueiro-bravo	Prunus myrtifolia (L.) Urb.	2	2
Rubiaceae	posoqueria	Posoqueria sp.	1	1
Salicaceae	espinho-de-judeu	Xylosma tessmannii Sleumer	1	1
	pau-lagarto	Casearia sp.	2	2
Sapindaceae	camboatá	Cupania oblongifolia Mart.	1	2
-	chal-chal	Allophylus edulis (A.StHil. et al.) Hieron. ex	2	2
		Niederl.		
Indeterminadas	indeterminadas	Indeterminadas	39	42
	240	245		

Lista das espécies e a quantidade de árvores e de fustes encontrados

Rio Macaé - Água Limpa - Patrimônio coletivo - Responsabilidade também !!!

